Mercurial > repos > public > sbplib_julia
changeset 562:8f7919a9b398 feature/boundary_ops
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 30 Nov 2020 18:30:24 +0100 |
parents | 884be64e82d9 (current diff) d1929491180b (diff) |
children | 212e266043dd |
files | src/LazyTensors/lazy_tensor_operations.jl src/SbpOperators/boundaryops/boundary_restriction.jl test/testSbpOperators.jl |
diffstat | 14 files changed, 326 insertions(+), 213 deletions(-) [+] |
line wrap: on
line diff
--- a/TODO.md Thu Nov 26 09:03:54 2020 +0100 +++ b/TODO.md Mon Nov 30 18:30:24 2020 +0100 @@ -10,10 +10,10 @@ - [ ] Create a struct that bundles the necessary Tensor operators for solving the wave equation. - [ ] Add a quick and simple way of running all tests for all subpackages. - [ ] Replace getindex hack for flatteing tuples with flatten_tuple. - - [ ] Fix indexing signatures. We should make sure we are not too specific. For the "inbetween" layers we don't know what type of index is coming so we should use `I...` instead of `I::Vararg{Int,R}` or probably better `I::Vararg{Any,R}` - [ ] Use `@inferred` in a lot of tests. - [ ] Make sure we are setting tolerances in tests in a consistent way - [ ] Add check for correct domain sizes to lazy tensor operations using SizeMismatch + - [ ] Write down some coding guideline or checklist for code convetions. For example i,j,... för indecies and I for multi-index ## Repo - [ ] Add Vidar to the authors list
--- a/src/Grids/Grids.jl Thu Nov 26 09:03:54 2020 +0100 +++ b/src/Grids/Grids.jl Mon Nov 30 18:30:24 2020 +0100 @@ -7,7 +7,7 @@ abstract type BoundaryIdentifier end struct CartesianBoundary{Dim, R<:Region} <: BoundaryIdentifier end dim(::CartesianBoundary{Dim, R}) where {Dim, R} = Dim -region(::CartesianBoundary{Dim, R}) where {Dim, R} = R +region(::CartesianBoundary{Dim, R}) where {Dim, R} = R #TODO: Should return R() export dim, region
--- a/src/LazyTensors/lazy_tensor_operations.jl Thu Nov 26 09:03:54 2020 +0100 +++ b/src/LazyTensors/lazy_tensor_operations.jl Mon Nov 30 18:30:24 2020 +0100 @@ -14,10 +14,7 @@ # TODO: Do boundschecking on creation! export LazyTensorMappingApplication -# TODO: Go through and remove unneccerary type parameters on functions -Base.getindex(ta::LazyTensorMappingApplication{T,0}, I::Index) where T = apply(ta.t, ta.o, I) -Base.getindex(ta::LazyTensorMappingApplication{T,R}, I::Vararg{Index,R}) where {T,R} = apply(ta.t, ta.o, I...) -Base.getindex(ta::LazyTensorMappingApplication{T,R}, I::Vararg{Int,R}) where {T,R} = apply(ta.t, ta.o, Index{Unknown}.(I)...) +Base.getindex(ta::LazyTensorMappingApplication{T,R}, I::Vararg{Any,R}) where {T,R} = apply(ta.t, ta.o, I...) Base.size(ta::LazyTensorMappingApplication) = range_size(ta.t) # TODO: What else is needed to implement the AbstractArray interface? @@ -50,8 +47,8 @@ Base.adjoint(tm::TensorMapping) = LazyTensorMappingTranspose(tm) Base.adjoint(tmt::LazyTensorMappingTranspose) = tmt.tm -apply(tmt::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::Vararg{Index,D}) where {T,R,D} = apply_transpose(tmt.tm, v, I...) -apply_transpose(tmt::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::Vararg{Index,R}) where {T,R,D} = apply(tmt.tm, v, I...) +apply(tmt::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::Vararg{Any,D}) where {T,R,D} = apply_transpose(tmt.tm, v, I...) +apply_transpose(tmt::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmt.tm, v, I...) range_size(tmt::LazyTensorMappingTranspose) = domain_size(tmt.tm) domain_size(tmt::LazyTensorMappingTranspose) = range_size(tmt.tm) @@ -67,11 +64,11 @@ end # TODO: Boundschecking in constructor. -apply(tmBinOp::LazyTensorMappingBinaryOperation{:+,T,R,D}, v::AbstractArray{T,D}, I::Vararg{Index,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) + apply(tmBinOp.tm2, v, I...) -apply(tmBinOp::LazyTensorMappingBinaryOperation{:-,T,R,D}, v::AbstractArray{T,D}, I::Vararg{Index,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) - apply(tmBinOp.tm2, v, I...) +apply(tmBinOp::LazyTensorMappingBinaryOperation{:+,T,R,D}, v::AbstractArray{T,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) + apply(tmBinOp.tm2, v, I...) +apply(tmBinOp::LazyTensorMappingBinaryOperation{:-,T,R,D}, v::AbstractArray{T,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) - apply(tmBinOp.tm2, v, I...) -range_size(tmBinOp::LazyTensorMappingBinaryOperation{Op,T,R,D}) where {Op,T,R,D} = range_size(tmBinOp.tm1) -domain_size(tmBinOp::LazyTensorMappingBinaryOperation{Op,T,R,D}) where {Op,T,R,D} = domain_size(tmBinOp.tm1) +range_size(tmBinOp::LazyTensorMappingBinaryOperation) = range_size(tmBinOp.tm1) +domain_size(tmBinOp::LazyTensorMappingBinaryOperation) = domain_size(tmBinOp.tm1) Base.:+(tm1::TensorMapping{T,R,D}, tm2::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:+,T,R,D}(tm1,tm2) Base.:-(tm1::TensorMapping{T,R,D}, tm2::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:-,T,R,D}(tm1,tm2) @@ -95,11 +92,11 @@ range_size(tm::TensorMappingComposition) = range_size(tm.t1) domain_size(tm::TensorMappingComposition) = domain_size(tm.t2) -function apply(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg{S,R} where S) where {T,R,K,D} +function apply(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg{Any,R}) where {T,R,K,D} apply(c.t1, c.t2*v, I...) end -function apply_transpose(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{T,R}, I::Vararg{S,D} where S) where {T,R,K,D} +function apply_transpose(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{T,R}, I::Vararg{Any,D}) where {T,R,K,D} apply_transpose(c.t2, c.t1'*v, I...) end @@ -132,7 +129,7 @@ range_size(llm::LazyLinearMap) = size(llm.A)[[llm.range_indicies...]] domain_size(llm::LazyLinearMap) = size(llm.A)[[llm.domain_indicies...]] -function apply(llm::LazyLinearMap{T,R,D}, v::AbstractArray{T,D}, I::Vararg{Index,R}) where {T,R,D} +function apply(llm::LazyLinearMap{T,R,D}, v::AbstractArray{T,D}, I::Vararg{Any,R}) where {T,R,D} view_index = ntuple(i->:,ndims(llm.A)) for i ∈ 1:R view_index = Base.setindex(view_index, Int(I[i]), llm.range_indicies[i]) @@ -141,7 +138,7 @@ return sum(A_view.*v) end -function apply_transpose(llm::LazyLinearMap{T,R,D}, v::AbstractArray{T,R}, I::Vararg{Index,D}) where {T,R,D} +function apply_transpose(llm::LazyLinearMap{T,R,D}, v::AbstractArray{T,R}, I::Vararg{Any,D}) where {T,R,D} apply(LazyLinearMap(llm.A, llm.domain_indicies, llm.range_indicies), v, I...) end @@ -240,8 +237,6 @@ # Resolve ambiguity between the two previous methods InflatedTensorMapping(I1::IdentityMapping{T}, I2::IdentityMapping{T}) where T = InflatedTensorMapping(I1,I2,IdentityMapping{T}()) -# TODO: Implement syntax and constructors for products of different combinations of InflatedTensorMapping and IdentityMapping - # TODO: Implement some pretty printing in terms of ⊗. E.g InflatedTensorMapping(I(3),B,I(2)) -> I(3)⊗B⊗I(2) function range_size(itm::InflatedTensorMapping) @@ -261,30 +256,56 @@ end function apply(itm::InflatedTensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg{Any,R}) where {T,R,D} - view_index, inner_index = split_index(itm, I...) + dim_before = range_dim(itm.before) + dim_domain = domain_dim(itm.tm) + dim_range = range_dim(itm.tm) + dim_after = range_dim(itm.after) + + view_index, inner_index = split_index(Val(dim_before), Val(dim_domain), Val(dim_range), Val(dim_after), I...) v_inner = view(v, view_index...) return apply(itm.tm, v_inner, inner_index...) end +function apply_transpose(itm::InflatedTensorMapping{T,R,D}, v::AbstractArray{T,R}, I::Vararg{Any,D}) where {T,R,D} + dim_before = range_dim(itm.before) + dim_domain = domain_dim(itm.tm) + dim_range = range_dim(itm.tm) + dim_after = range_dim(itm.after) + + view_index, inner_index = split_index(Val(dim_before), Val(dim_range), Val(dim_domain), Val(dim_after), I...) + + v_inner = view(v, view_index...) + return apply_transpose(itm.tm, v_inner, inner_index...) +end + """ - split_index(...) + split_index(::Val{dim_before}, ::Val{dim_view}, ::Val{dim_index}, ::Val{dim_after}, I...) -Splits the multi-index into two parts. One part for the view that the inner TensorMapping acts on, and one part for indexing the result +Splits the multi-index `I` into two parts. One part which is expected to be +used as a view, and one which is expected to be used as an index. Eg. ``` -(1,2,3,4) -> (1,:,:,4), (2,3) +split_index(Val(1),Val(3),Val(2),Val(1),(1,2,3,4)) -> (1,:,:,:,4), (2,3) ``` + +`dim_view` controls how many colons are in the view, and `dim_index` controls +how many elements are extracted from the middle. +`dim_before` and `dim_after` decides the length of the index parts before and after the colons in the view index. + +Arguments should satisfy `length(I) == dim_before+B_domain+dim_after`. + +The returned values satisfy + * `length(view_index) == dim_before + dim_view + dim_after` + * `length(I_middle) == dim_index` """ -function split_index(itm::InflatedTensorMapping{T,R,D}, I::Vararg{Any,R}) where {T,R,D} - I_before = slice_tuple(I, Val(1), Val(range_dim(itm.before))) - I_after = slice_tuple(I, Val(R-range_dim(itm.after)+1), Val(R)) +function split_index(::Val{dim_before}, ::Val{dim_view}, ::Val{dim_index}, ::Val{dim_after}, I...) where {dim_before,dim_view, dim_index,dim_after} + I_before, I_middle, I_after = split_tuple(I, Val(dim_before), Val(dim_index)) - view_index = (I_before..., ntuple((i)->:,domain_dim(itm.tm))..., I_after...) - inner_index = slice_tuple(I, Val(range_dim(itm.before)+1), Val(R-range_dim(itm.after))) + view_index = (I_before..., ntuple((i)->:, dim_view)..., I_after...) - return (view_index, inner_index) + return view_index, I_middle end # TODO: Can this be replaced by something more elegant while still being type stable? 2020-10-21 @@ -302,6 +323,32 @@ end """ + split_tuple(t::Tuple{...}, ::Val{M}) where {N,M} + +Split the tuple `t` into two parts. the first part is `M` long. +E.g +``` +split_tuple((1,2,3,4),Val(3)) -> (1,2,3), (4,) +``` +""" +function split_tuple(t::NTuple{N},::Val{M}) where {N,M} + return slice_tuple(t,Val(1), Val(M)), slice_tuple(t,Val(M+1), Val(N)) +end + +""" + split_tuple(t::Tuple{...},::Val{M},::Val{K}) where {N,M,K} + +Same as `split_tuple(t::NTuple{N},::Val{M})` but splits the tuple in three parts. With the first +two parts having lenght `M` and `K`. +""" +function split_tuple(t::NTuple{N},::Val{M},::Val{K}) where {N,M,K} + p1, tail = split_tuple(t, Val(M)) + p2, p3 = split_tuple(tail, Val(K)) + return p1,p2,p3 +end + + +""" flatten_tuple(t) Takes a nested tuple and flattens the whole structure
--- a/src/RegionIndices/RegionIndices.jl Thu Nov 26 09:03:54 2020 +0100 +++ b/src/RegionIndices/RegionIndices.jl Mon Nov 30 18:30:24 2020 +0100 @@ -4,9 +4,8 @@ struct Interior <: Region end struct Lower <: Region end struct Upper <: Region end -struct Unknown <: Region end -export Region, Interior, Lower, Upper, Unknown +export Region, Interior, Lower, Upper struct Index{R<:Region, T<:Integer} i::T
--- a/src/SbpOperators/boundaryops/boundary_restriction.jl Thu Nov 26 09:03:54 2020 +0100 +++ b/src/SbpOperators/boundaryops/boundary_restriction.jl Mon Nov 30 18:30:24 2020 +0100 @@ -41,24 +41,18 @@ LazyTensors.range_size(e::BoundaryRestriction) = () LazyTensors.domain_size(e::BoundaryRestriction) = e.size -# TODO: Currently not working. -# We need to handle getindex for LazyTensorMappingApplication such that we pass more #indices than the -# range size of the TensorMapping. Or we need to be able to handle the case where we dont pass any index, for -# 0-dimensional tensormappings. +# TODO: Should we support indexing into the 0-dimensional lazyarray? This is +# supported for arrays with linear index style (i.e for e.g +# u = fill(1), u[] and u[1] are both valid.) This currently not supported by +# LazyTensorMappingApplication. " Restricts a grid function v on a grid of size m to the scalar element v[1]" -function LazyTensors.apply(e::BoundaryRestriction{T,M,Lower}, v::AbstractVector{T}, i::Index{Lower}) where {T,M} - @boundscheck if Int(i)!=1 - throw(BoundsError()) - end - apply_stencil(e.stencil,v,Int(i)) +function LazyTensors.apply(e::BoundaryRestriction{T,M,Lower}, v::AbstractVector{T}) where {T,M} + apply_stencil(e.stencil,v,1) end " Restricts a grid function v on a grid of size m to the scalar element v[m]" -function LazyTensors.apply(e::BoundaryRestriction{T,M,Upper}, v::AbstractVector{T}, i::Index{Upper}) where {T,M} - @boundscheck if Int(i) != e.size[1] - throw(BoundsError()) - end - apply_stencil_backwards(e.stencil,v,Int(i)) +function LazyTensors.apply(e::BoundaryRestriction{T,M,Upper}, v::AbstractVector{T}) where {T,M} + apply_stencil_backwards(e.stencil,v,e.size[1]) end " Transpose of a restriction is an inflation or prolongation.
--- a/src/SbpOperators/constantstenciloperator.jl Thu Nov 26 09:03:54 2020 +0100 +++ b/src/SbpOperators/constantstenciloperator.jl Mon Nov 30 18:30:24 2020 +0100 @@ -14,7 +14,7 @@ return @inbounds h_inv*h_inv*Int(op.parity)*apply_stencil_backwards(op.closureStencils[N-Int(i)+1], v, Int(i)) end -@inline function apply_2nd_derivative(op::ConstantStencilOperator, h_inv::Real, v::AbstractVector, index::Index{Unknown}) +@inline function apply_2nd_derivative(op::ConstantStencilOperator, h_inv::Real, v::AbstractVector, i) N = length(v) r = getregion(Int(index), closuresize(op), N) i = Index(Int(index), r) @@ -26,10 +26,9 @@ apply_quadrature(op::ConstantStencilOperator, h::Real, v::T, i::Index{Upper}, N::Integer) where T = v*h*op.quadratureClosure[N-Int(i)+1] apply_quadrature(op::ConstantStencilOperator, h::Real, v::T, i::Index{Interior}, N::Integer) where T = v*h -function apply_quadrature(op::ConstantStencilOperator, h::Real, v::T, index::Index{Unknown}, N::Integer) where T - r = getregion(Int(index), closuresize(op), N) - i = Index(Int(index), r) - return apply_quadrature(op, h, v, i, N) +function apply_quadrature(op::ConstantStencilOperator, h::Real, v::T, i, N::Integer) where T + r = getregion(i, closuresize(op), N) + return apply_quadrature(op, h, v, Index(i, r), N) end export apply_quadrature @@ -38,10 +37,9 @@ apply_inverse_quadrature(op::ConstantStencilOperator, h_inv::Real, v::T, i::Index{Upper}, N::Integer) where T = h_inv*v/op.quadratureClosure[N-Int(i)+1] apply_inverse_quadrature(op::ConstantStencilOperator, h_inv::Real, v::T, i::Index{Interior}, N::Integer) where T = v*h_inv -function apply_inverse_quadrature(op::ConstantStencilOperator, h_inv::Real, v::T, index::Index{Unknown}, N::Integer) where T - r = getregion(Int(index), closuresize(op), N) - i = Index(Int(index), r) - return apply_inverse_quadrature(op, h_inv, v, i, N) +function apply_inverse_quadrature(op::ConstantStencilOperator, h_inv::Real, v::T, i, N::Integer) where T + r = getregion(i, closuresize(op), N) + return apply_inverse_quadrature(op, h_inv, v, Index(i, r), N) end export apply_inverse_quadrature @@ -62,14 +60,14 @@ export apply_normal_derivative_transpose -function apply_normal_derivative(op::ConstantStencilOperator, h_inv::Real, v::Number, i::Index, N::Integer, ::Type{Lower}) +function apply_normal_derivative(op::ConstantStencilOperator, h_inv::Real, v::Number, i, N::Integer, ::Type{Lower}) @boundscheck if !(0<length(Int(i)) <= N) throw(BoundsError()) end h_inv*op.dClosure[Int(i)-1]*v end -function apply_normal_derivative(op::ConstantStencilOperator, h_inv::Real, v::Number, i::Index, N::Integer, ::Type{Upper}) +function apply_normal_derivative(op::ConstantStencilOperator, h_inv::Real, v::Number, i, N::Integer, ::Type{Upper}) @boundscheck if !(0<length(Int(i)) <= N) throw(BoundsError()) end
--- a/src/SbpOperators/laplace/laplace.jl Thu Nov 26 09:03:54 2020 +0100 +++ b/src/SbpOperators/laplace/laplace.jl Mon Nov 30 18:30:24 2020 +0100 @@ -23,24 +23,24 @@ LazyTensors.range_size(L::Laplace) = getindex.(range_size.(L.D2),1) LazyTensors.domain_size(L::Laplace) = getindex.(domain_size.(L.D2),1) -function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} +function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Any,Dim}) where {T,Dim} error("not implemented") end # u = L*v -function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, I::Index) where T - @inbounds u = LazyTensors.apply(L.D2[1],v,I) +function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, i) where T + @inbounds u = LazyTensors.apply(L.D2[1],v,i) return u end -function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T +function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, i, j) where T # 2nd x-derivative - @inbounds vx = view(v, :, Int(J)) - @inbounds uᵢ = LazyTensors.apply(L.D2[1], vx , I) + @inbounds vx = view(v, :, Int(j)) + @inbounds uᵢ = LazyTensors.apply(L.D2[1], vx , i) # 2nd y-derivative - @inbounds vy = view(v, Int(I), :) - @inbounds uᵢ += LazyTensors.apply(L.D2[2], vy , J) + @inbounds vy = view(v, Int(i), :) + @inbounds uᵢ += LazyTensors.apply(L.D2[2], vy , j) return uᵢ end
--- a/src/SbpOperators/laplace/secondderivative.jl Thu Nov 26 09:03:54 2020 +0100 +++ b/src/SbpOperators/laplace/secondderivative.jl Mon Nov 30 18:30:24 2020 +0100 @@ -20,29 +20,24 @@ LazyTensors.range_size(D2::SecondDerivative) = D2.size LazyTensors.domain_size(D2::SecondDerivative) = D2.size -#TODO: The 1D tensor mappings should not have to dispatch on 1D tuples if we write LazyTensor.apply for vararg right?!?! -# Currently have to index the Tuple{Index} in each method in order to call the stencil methods which is ugly. -# I thought I::Vararg{Index,R} fell back to just Index for R = 1 +# Apply for different regions Lower/Interior/Upper or Unknown region +function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.closureStencils[Int(i)], v, Int(i)) +end -# Apply for different regions Lower/Interior/Upper or Unknown region -function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Lower}) where T - return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.closureStencils[Int(I)], v, Int(I)) +function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i::Index{Interior}) where T + return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.innerStencil, v, Int(i)) end -function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Interior}) where T - return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.innerStencil, v, Int(I)) +function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i::Index{Upper}) where T + N = length(v) # TODO: Use domain_size here instead? N = domain_size(D2,size(v)) + return @inbounds D2.h_inv*D2.h_inv*apply_stencil_backwards(D2.closureStencils[N-Int(i)+1], v, Int(i)) end -function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Upper}) where T - N = length(v) # TODO: Use domain_size here instead? N = domain_size(D2,size(v)) - return @inbounds D2.h_inv*D2.h_inv*apply_stencil_backwards(D2.closureStencils[N-Int(I)+1], v, Int(I)) -end - -function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, index::Index{Unknown}) where T +function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i) where T N = length(v) # TODO: Use domain_size here instead? - r = getregion(Int(index), closuresize(D2), N) - I = Index(Int(index), r) - return LazyTensors.apply(D2, v, I) + r = getregion(i, closuresize(D2), N) + return LazyTensors.apply(D2, v, Index(i, r)) end closuresize(D2::SecondDerivative{T,N,M,K}) where {T<:Real,N,M,K} = M
--- a/src/SbpOperators/quadrature/diagonal_inner_product.jl Thu Nov 26 09:03:54 2020 +0100 +++ b/src/SbpOperators/quadrature/diagonal_inner_product.jl Mon Nov 30 18:30:24 2020 +0100 @@ -17,30 +17,25 @@ LazyTensors.range_size(H::DiagonalInnerProduct) = H.size LazyTensors.domain_size(H::DiagonalInnerProduct) = H.size -function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index) where T - return @inbounds apply(H, v, I) +function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds H.h*H.quadratureClosure[Int(i)]*v[Int(i)] end -function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Lower}) where T - return @inbounds H.h*H.quadratureClosure[Int(I)]*v[Int(I)] -end - -function LazyTensors.apply(H::DiagonalInnerProduct{T},v::AbstractVector{T}, I::Index{Upper}) where T +function LazyTensors.apply(H::DiagonalInnerProduct{T},v::AbstractVector{T}, i::Index{Upper}) where T N = length(v); - return @inbounds H.h*H.quadratureClosure[N-Int(I)+1]*v[Int(I)] + return @inbounds H.h*H.quadratureClosure[N-Int(i)+1]*v[Int(i)] end -function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Interior}) where T - return @inbounds H.h*v[Int(I)] +function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Interior}) where T + return @inbounds H.h*v[Int(i)] end -function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, index::Index{Unknown}) where T +function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, i) where T N = length(v); - r = getregion(Int(index), closuresize(H), N) - i = Index(Int(index), r) - return LazyTensors.apply(H, v, i) + r = getregion(i, closuresize(H), N) + return LazyTensors.apply(H, v, Index(i, r)) end -LazyTensors.apply_transpose(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index) where T = LazyTensors.apply(H,v,I) +LazyTensors.apply_transpose(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i) closuresize(H::DiagonalInnerProduct{T,M}) where {T,M} = M
--- a/src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl Thu Nov 26 09:03:54 2020 +0100 +++ b/src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl Mon Nov 30 18:30:24 2020 +0100 @@ -18,27 +18,26 @@ LazyTensors.domain_size(Hi::InverseDiagonalInnerProduct) = Hi.size -function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Lower}) where T - return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[Int(I)]*v[Int(I)] +function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[Int(i)]*v[Int(i)] end -function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Upper}) where T +function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Upper}) where T N = length(v); - return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[N-Int(I)+1]*v[Int(I)] + return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[N-Int(i)+1]*v[Int(i)] end -function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Interior}) where T - return @inbounds Hi.h_inv*v[Int(I)] +function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Interior}) where T + return @inbounds Hi.h_inv*v[Int(i)] end -function LazyTensors.apply(Hi::InverseDiagonalInnerProduct, v::AbstractVector{T}, index::Index{Unknown}) where T +function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i) where T N = length(v); - r = getregion(Int(index), closuresize(Hi), N) - i = Index(Int(index), r) - return LazyTensors.apply(Hi, v, i) + r = getregion(i, closuresize(Hi), N) + return LazyTensors.apply(Hi, v, Index(i, r)) end -LazyTensors.apply_transpose(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index) where T = LazyTensors.apply(Hi,v,I) +LazyTensors.apply_transpose(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(Hi,v,i) closuresize(Hi::InverseDiagonalInnerProduct{T,M}) where {T,M} = M
--- a/src/SbpOperators/quadrature/inverse_quadrature.jl Thu Nov 26 09:03:54 2020 +0100 +++ b/src/SbpOperators/quadrature/inverse_quadrature.jl Mon Nov 30 18:30:24 2020 +0100 @@ -25,23 +25,23 @@ LazyTensors.domain_size(Qi::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size -function LazyTensors.apply(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} +function LazyTensors.apply(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Any,Dim}) where {T,Dim} error("not implemented") end -@inline function LazyTensors.apply(Qi::InverseQuadrature{1,T}, v::AbstractVector{T}, I::Index) where T - @inbounds q = apply(Qi.Hi[1], v , I) +@inline function LazyTensors.apply(Qi::InverseQuadrature{1,T}, v::AbstractVector{T}, i) where T + @inbounds q = apply(Qi.Hi[1], v , i) return q end -@inline function LazyTensors.apply(Qi::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T +@inline function LazyTensors.apply(Qi::InverseQuadrature{2,T}, v::AbstractArray{T,2}, i,j) where T # InverseQuadrature in x direction - @inbounds vx = view(v, :, Int(J)) - @inbounds qx_inv = apply(Qi.Hi[1], vx , I) + @inbounds vx = view(v, :, Int(j)) + @inbounds qx_inv = apply(Qi.Hi[1], vx , i) # InverseQuadrature in y-direction - @inbounds vy = view(v, Int(I), :) - @inbounds qy_inv = apply(Qi.Hi[2], vy, J) + @inbounds vy = view(v, Int(i), :) + @inbounds qy_inv = apply(Qi.Hi[2], vy, j) return qx_inv*qy_inv end -LazyTensors.apply_transpose(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Qi,v,I...) +LazyTensors.apply_transpose(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Any,Dim}) where {Dim,T} = LazyTensors.apply(Qi,v,I...)
--- a/src/SbpOperators/quadrature/quadrature.jl Thu Nov 26 09:03:54 2020 +0100 +++ b/src/SbpOperators/quadrature/quadrature.jl Mon Nov 30 18:30:24 2020 +0100 @@ -22,23 +22,23 @@ LazyTensors.range_size(H::Quadrature) = getindex.(range_size.(H.H),1) LazyTensors.domain_size(H::Quadrature) = getindex.(domain_size.(H.H),1) -function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} +function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Any,Dim}) where {T,Dim} error("not implemented") end -function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T - @inbounds q = apply(Q.H[1], v , I) +function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, i) where T + @inbounds q = apply(Q.H[1], v , i) return q end -function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T +function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, i, j) where T # Quadrature in x direction - @inbounds vx = view(v, :, Int(J)) - @inbounds qx = apply(Q.H[1], vx , I) + @inbounds vx = view(v, :, Int(j)) + @inbounds qx = apply(Q.H[1], vx , i) # Quadrature in y-direction - @inbounds vy = view(v, Int(I), :) - @inbounds qy = apply(Q.H[2], vy, J) + @inbounds vy = view(v, Int(i), :) + @inbounds qy = apply(Q.H[2], vy, j) return qx*qy end -LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I...) +LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Any,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I...)
--- a/test/testLazyTensors.jl Thu Nov 26 09:03:54 2020 +0100 +++ b/test/testLazyTensors.jl Mon Nov 30 18:30:24 2020 +0100 @@ -8,10 +8,10 @@ @testset "Generic Mapping methods" begin struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end - LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::NTuple{R,Index{<:Region}}) where {T,R,D} = :apply + LazyTensors.apply(m::DummyMapping{T,R,D}, v, I::Vararg{Any,R}) where {T,R,D} = :apply @test range_dim(DummyMapping{Int,2,3}()) == 2 @test domain_dim(DummyMapping{Int,2,3}()) == 3 - @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),(Index{Unknown}(0),Index{Unknown}(0))) == :apply + @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),0,0) == :apply @test eltype(DummyMapping{Int,2,3}()) == Int @test eltype(DummyMapping{Float64,2,3}()) == Float64 end @@ -19,19 +19,18 @@ @testset "Mapping transpose" begin struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end - LazyTensors.apply(m::DummyMapping{T,R,D}, v, I::Vararg{Index{<:Region},R}) where {T,R,D} = :apply - LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Index{<:Region},D}) where {T,R,D} = :apply_transpose + LazyTensors.apply(m::DummyMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = :apply + LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Any,D}) where {T,R,D} = :apply_transpose - LazyTensors.range_size(m::DummyMapping{T,R,D}) where {T,R,D} = :range_size - LazyTensors.domain_size(m::DummyMapping{T,R,D}) where {T,R,D} = :domain_size + LazyTensors.range_size(m::DummyMapping) = :range_size + LazyTensors.domain_size(m::DummyMapping) = :domain_size m = DummyMapping{Float64,2,3}() - I = Index{Unknown}(0) @test m' isa TensorMapping{Float64, 3,2} @test m'' == m - @test apply(m',zeros(Float64,(0,0)), I, I, I) == :apply_transpose - @test apply(m'',zeros(Float64,(0,0,0)), I, I) == :apply - @test apply_transpose(m', zeros(Float64,(0,0,0)), I, I) == :apply + @test apply(m',zeros(Float64,(0,0)), 0, 0, 0) == :apply_transpose + @test apply(m'',zeros(Float64,(0,0,0)), 0, 0) == :apply + @test apply_transpose(m', zeros(Float64,(0,0,0)), 0, 0) == :apply @test range_size(m') == :domain_size @test domain_size(m') == :range_size @@ -42,7 +41,7 @@ domain_size::NTuple{D,Int} end - LazyTensors.apply(m::SizeDoublingMapping{T,R,D}, v, i::Vararg{Index{<:Region},R}) where {T,R,D} = (:apply,v,i) + LazyTensors.apply(m::SizeDoublingMapping{T,R}, v, i::Vararg{Any,R}) where {T,R} = (:apply,v,i) LazyTensors.range_size(m::SizeDoublingMapping) = 2 .* m.domain_size LazyTensors.domain_size(m::SizeDoublingMapping) = m.domain_size @@ -51,15 +50,11 @@ v = [0,1,2] @test m*v isa AbstractVector{Int} @test size(m*v) == 2 .*size(v) - @test (m*v)[Index{Upper}(0)] == (:apply,v,(Index{Upper}(0),)) - @test (m*v)[0] == (:apply,v,(Index{Unknown}(0),)) + @test (m*v)[0] == (:apply,v,(0,)) @test m*m*v isa AbstractVector{Int} - @test (m*m*v)[Index{Upper}(1)] == (:apply,m*v,(Index{Upper}(1),)) - @test (m*m*v)[1] == (:apply,m*v,(Index{Unknown}(1),)) - @test (m*m*v)[Index{Interior}(3)] == (:apply,m*v,(Index{Interior}(3),)) - @test (m*m*v)[3] == (:apply,m*v,(Index{Unknown}(3),)) - @test (m*m*v)[Index{Lower}(6)] == (:apply,m*v,(Index{Lower}(6),)) - @test (m*m*v)[6] == (:apply,m*v,(Index{Unknown}(6),)) + @test (m*m*v)[1] == (:apply,m*v,(1,)) + @test (m*m*v)[3] == (:apply,m*v,(3,)) + @test (m*m*v)[6] == (:apply,m*v,(6,)) @test_broken BoundsError == (m*m*v)[0] @test_broken BoundsError == (m*m*v)[7] @test_throws MethodError m*m @@ -70,16 +65,15 @@ m = SizeDoublingMapping{Float64, 2, 2}((3,3)) v = ones(3,3) - I = (Index{Lower}(1),Index{Interior}(2)); @test size(m*v) == 2 .*size(v) - @test (m*v)[I] == (:apply,v,I) + @test (m*v)[1,2] == (:apply,v,(1,2)) struct ScalingOperator{T,D} <: TensorMapping{T,D,D} λ::T size::NTuple{D,Int} end - LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Index,D}) where {T,D} = m.λ*v[I] + LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] LazyTensors.range_size(m::ScalingOperator) = m.size LazyTensors.domain_size(m::ScalingOperator) = m.size @@ -91,8 +85,7 @@ m = ScalingOperator{Int,2}(2,(2,2)) v = [[1 2];[3 4]] @test m*v == [[2 4];[6 8]] - I = (Index{Upper}(2),Index{Lower}(1)) - @test (m*v)[I] == 6 + @test (m*v)[2,1] == 6 end @testset "TensorMapping binary operations" begin @@ -102,7 +95,7 @@ domain_size::NTuple{D,Int} end - LazyTensors.apply(m::ScalarMapping{T,R,D}, v, I::Vararg{Index{<:Region}}) where {T,R,D} = m.λ*v[I...] + LazyTensors.apply(m::ScalarMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = m.λ*v[I...] LazyTensors.range_size(m::ScalarMapping) = m.domain_size LazyTensors.domain_size(m::ScalarMapping) = m.range_size @@ -340,61 +333,115 @@ B = LazyLinearMap(B̃,(1,2),(3,)) C = LazyLinearMap(C̃,(1,),(2,3)) - @test InflatedTensorMapping(I(3,2), A, I(4)) isa TensorMapping{Float64, 4, 4} - @test InflatedTensorMapping(I(3,2), B, I(4)) isa TensorMapping{Float64, 5, 4} - @test InflatedTensorMapping(I(3), C, I(2,3)) isa TensorMapping{Float64, 4, 5} - @test InflatedTensorMapping(C, I(2,3)) isa TensorMapping{Float64, 3, 4} - @test InflatedTensorMapping(I(3), C) isa TensorMapping{Float64, 2, 3} - @test InflatedTensorMapping(I(3), I(2,3)) isa TensorMapping{Float64, 3, 3} - - @test range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) - @test domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) - - @test range_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,4,2,4) - @test domain_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,3,4) - - @test range_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,4,2,3) - @test domain_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,2,3,2,3) - - @inferred range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) - @inferred domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) + @testset "Constructors" begin + @test InflatedTensorMapping(I(3,2), A, I(4)) isa TensorMapping{Float64, 4, 4} + @test InflatedTensorMapping(I(3,2), B, I(4)) isa TensorMapping{Float64, 5, 4} + @test InflatedTensorMapping(I(3), C, I(2,3)) isa TensorMapping{Float64, 4, 5} + @test InflatedTensorMapping(C, I(2,3)) isa TensorMapping{Float64, 3, 4} + @test InflatedTensorMapping(I(3), C) isa TensorMapping{Float64, 2, 3} + @test InflatedTensorMapping(I(3), I(2,3)) isa TensorMapping{Float64, 3, 3} + end - # Test InflatedTensorMapping mapping w. before and after - tm = InflatedTensorMapping(I(3,2), A, I(4)) - v = rand(domain_size(tm)...) - @tullio IAIv[a,b,c,d] := Ã[c,i]*v[a,b,i,d] - @test tm*v ≈ IAIv rtol=1e-14 - @inferred LazyTensors.split_index(tm,1,1,1,1) + @testset "Range and domain size" begin + @test range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) + @test domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) - # Test InflatedTensorMapping mapping w. before - tm = InflatedTensorMapping(I(3,2), A) - v = rand(domain_size(tm)...) - @tullio IAIv[a,b,c] := Ã[c,i]*v[a,b,i] - @test tm*v ≈ IAIv rtol=1e-14 - @inferred LazyTensors.split_index(tm,1,1,1) + @test range_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,4,2,4) + @test domain_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,3,4) - # Test InflatedTensorMapping mapping w. after - tm = InflatedTensorMapping(A,I(4)) - v = rand(domain_size(tm)...) - @tullio IAIv[c,d] := Ã[c,i]*v[i,d] - @test tm*v ≈ IAIv rtol=1e-14 - @inferred LazyTensors.split_index(tm,1,1) + @test range_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,4,2,3) + @test domain_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,2,3,2,3) - struct ScalingOperator{T,D} <: TensorMapping{T,D,D} - λ::T - size::NTuple{D,Int} + @inferred range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) + @inferred domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) end - LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Index,D}) where {T,D} = m.λ*v[I] - LazyTensors.range_size(m::ScalingOperator) = m.size - LazyTensors.domain_size(m::ScalingOperator) = m.size + @testset "Application" begin + # Testing regular application and transposed application with inflation "before", "after" and "before and after". + # The inflated tensor mappings are chosen to preserve, reduce and increase the dimension of the result compared to the input. + tests = [ + ( + InflatedTensorMapping(I(3,2), A, I(4)), + (v-> @tullio res[a,b,c,d] := Ã[c,i]*v[a,b,i,d]), # Expected result of apply + (v-> @tullio res[a,b,c,d] := Ã[i,c]*v[a,b,i,d]), # Expected result of apply_transpose + ), + ( + InflatedTensorMapping(I(3,2), B, I(4)), + (v-> @tullio res[a,b,c,d,e] := B̃[c,d,i]*v[a,b,i,e]), + (v-> @tullio res[a,b,c,d] := B̃[i,j,c]*v[a,b,i,j,d]), + ), + ( + InflatedTensorMapping(I(3,2), C, I(4)), + (v-> @tullio res[a,b,c,d] := C̃[c,i,j]*v[a,b,i,j,d]), + (v-> @tullio res[a,b,c,d,e] := C̃[i,c,d]*v[a,b,i,e]), + ), + ( + InflatedTensorMapping(I(3,2), A), + (v-> @tullio res[a,b,c] := Ã[c,i]*v[a,b,i]), + (v-> @tullio res[a,b,c] := Ã[i,c]*v[a,b,i]), + ), + ( + InflatedTensorMapping(I(3,2), B), + (v-> @tullio res[a,b,c,d] := B̃[c,d,i]*v[a,b,i]), + (v-> @tullio res[a,b,c] := B̃[i,j,c]*v[a,b,i,j]), + ), + ( + InflatedTensorMapping(I(3,2), C), + (v-> @tullio res[a,b,c] := C̃[c,i,j]*v[a,b,i,j]), + (v-> @tullio res[a,b,c,d] := C̃[i,c,d]*v[a,b,i]), + ), + ( + InflatedTensorMapping(A,I(4)), + (v-> @tullio res[a,b] := Ã[a,i]*v[i,b]), + (v-> @tullio res[a,b] := Ã[i,a]*v[i,b]), + ), + ( + InflatedTensorMapping(B,I(4)), + (v-> @tullio res[a,b,c] := B̃[a,b,i]*v[i,c]), + (v-> @tullio res[a,b] := B̃[i,j,a]*v[i,j,b]), + ), + ( + InflatedTensorMapping(C,I(4)), + (v-> @tullio res[a,b] := C̃[a,i,j]*v[i,j,b]), + (v-> @tullio res[a,b,c] := C̃[i,a,b]*v[i,c]), + ), + ] - tm = InflatedTensorMapping(I(2,3),ScalingOperator(2.0, (3,2)),I(3,4)) - v = rand(domain_size(tm)...) + @testset "apply" begin + for i ∈ 1:length(tests) + tm = tests[i][1] + v = rand(domain_size(tm)...) + true_value = tests[i][2](v) + @test tm*v ≈ true_value rtol=1e-14 + end + end + + @testset "apply_transpose" begin + for i ∈ 1:length(tests) + tm = tests[i][1] + v = rand(range_size(tm)...) + true_value = tests[i][3](v) + @test tm'*v ≈ true_value rtol=1e-14 + end + end - @inferred LazyTensors.split_index(tm,1,2,3,2,2,4) - @inferred apply(tm,v,Index{Unknown}.((1,2,3,2,2,4))...) - @inferred (tm*v)[1,2,3,2,2,4] + @testset "Inference of application" begin + struct ScalingOperator{T,D} <: TensorMapping{T,D,D} + λ::T + size::NTuple{D,Int} + end + + LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] + LazyTensors.range_size(m::ScalingOperator) = m.size + LazyTensors.domain_size(m::ScalingOperator) = m.size + + tm = InflatedTensorMapping(I(2,3),ScalingOperator(2.0, (3,2)),I(3,4)) + v = rand(domain_size(tm)...) + + @inferred apply(tm,v,1,2,3,2,2,4) + @inferred (tm*v)[1,2,3,2,2,4] + end + end @testset "InflatedTensorMapping of InflatedTensorMapping" begin A = ScalingOperator(2.0,(2,3)) @@ -405,7 +452,20 @@ @test InflatedTensorMapping(I(2), I(2), I(2)) isa InflatedTensorMapping # The constructor should always return its type. end +end +@testset "split_index" begin + @test LazyTensors.split_index(Val(2),Val(1),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,5,6),(3,4)) + @test LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,:,:,5,6),(3,4)) + @test LazyTensors.split_index(Val(3),Val(1),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,5,6),(4,)) + @test LazyTensors.split_index(Val(3),Val(2),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,:,5,6),(4,)) + @test LazyTensors.split_index(Val(1),Val(1),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,4,5,6),(2,3)) + @test LazyTensors.split_index(Val(1),Val(2),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,:,4,5,6),(2,3)) + + @test LazyTensors.split_index(Val(0),Val(1),Val(3),Val(3),1,2,3,4,5,6) == ((:,4,5,6),(1,2,3)) + @test LazyTensors.split_index(Val(3),Val(1),Val(3),Val(0),1,2,3,4,5,6) == ((1,2,3,:),(4,5,6)) + + @inferred LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,2,2,4) end @testset "slice_tuple" begin @@ -415,6 +475,32 @@ @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(4), Val(6)) == (4,5,6) end +@testset "split_tuple" begin + @testset "2 parts" begin + @test LazyTensors.split_tuple((),Val(0)) == ((),()) + @test LazyTensors.split_tuple((1,),Val(0)) == ((),(1,)) + @test LazyTensors.split_tuple((1,),Val(1)) == ((1,),()) + + @test LazyTensors.split_tuple((1,2,3,4),Val(0)) == ((),(1,2,3,4)) + @test LazyTensors.split_tuple((1,2,3,4),Val(1)) == ((1,),(2,3,4)) + @test LazyTensors.split_tuple((1,2,3,4),Val(2)) == ((1,2),(3,4)) + @test LazyTensors.split_tuple((1,2,3,4),Val(3)) == ((1,2,3),(4,)) + @test LazyTensors.split_tuple((1,2,3,4),Val(4)) == ((1,2,3,4),()) + + @inferred LazyTensors.split_tuple((1,2,3,4),Val(3)) + end + + @testset "3 parts" begin + @test LazyTensors.split_tuple((),Val(0),Val(0)) == ((),(),()) + @test LazyTensors.split_tuple((1,2,3),Val(1), Val(1)) == ((1,),(2,),(3,)) + + @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(1),Val(2)) == ((1,),(2,3),(4,5,6)) + @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) == ((1,2,3),(4,5),(6,)) + + @inferred LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) + end +end + @testset "flatten_tuple" begin @test LazyTensors.flatten_tuple((1,)) == (1,) @test LazyTensors.flatten_tuple((1,2,3,4,5,6)) == (1,2,3,4,5,6) @@ -430,7 +516,7 @@ size::NTuple{D,Int} end - LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Index,D}) where {T,D} = m.λ*v[I] + LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] LazyTensors.range_size(m::ScalingOperator) = m.size LazyTensors.domain_size(m::ScalingOperator) = m.size
--- a/test/testSbpOperators.jl Thu Nov 26 09:03:54 2020 +0100 +++ b/test/testSbpOperators.jl Mon Nov 30 18:30:24 2020 +0100 @@ -184,8 +184,8 @@ v = evalOn(g,x->1+x^2) u = fill(3.124) - @test (e_l*v)[Index{Lower}(1)] == v[1] - @test (e_r*v)[Index{Upper}(4)] == v[end] + @test (e_l*v)[] == v[1] + @test (e_r*v)[] == v[end] @test e_l'*u == [u[], 0, 0, 0] @test e_r'*u == [0, 0, 0, u[]] @test_throws BoundsError (e_l*v)[Index{Lower}(3)] @@ -218,19 +218,19 @@ @test range_size(e_s) == (4,) @test range_size(e_n) == (4,) - I_w = [(Index{Lower}(1),Index{Lower}(1)), - (Index{Lower}(1),Index{Interior}(2)), - (Index{Lower}(1),Index{Interior}(3)), - (Index{Lower}(1),Index{Interior}(4)), - (Index{Lower}(1),Index{Upper}(5))] + I_w = [(Index{Lower}(1),), + (Index{Interior}(2),), + (Index{Interior}(3),), + (Index{Interior}(4),), + (Index{Upper}(5),)] v_w = [10,7,4,1.0,1]; for i = 1:length(I_w) - @test_broken (e_w*v)[I_w[i]...] == v_w[i]; + @test (e_w*v)[I_w[i]...] == v_w[i]; end - @test_broken e_w*v == [10,7,4,1.0,1] - @test_broken e_e*v == [13,10,7,4,4.0] - @test_broken e_s*v == [10,11,12,13.0] - @test_broken e_n*v == [1,2,3,4.0] + @test e_w*v == [10,7,4,1.0,1] + @test e_e*v == [13,10,7,4,4.0] + @test e_s*v == [10,11,12,13.0] + @test e_n*v == [1,2,3,4.0] g_x = [1,2,3,4.0] g_y = [5,4,3,2,1.0] @@ -247,10 +247,10 @@ G_n = zeros(Float64, (4,5)) G_n[:,5] = g_x - @test_broken e_w'*g_y == G_w - @test_broken e_e'*g_y == G_e - @test_broken e_s'*g_x == G_s - @test_broken e_n'*g_x == G_n + @test e_w'*g_y == G_w + @test e_e'*g_y == G_e + @test e_s'*g_x == G_s + @test e_n'*g_x == G_n end # # @testset "NormalDerivative" begin