Mercurial > repos > public > sbplib_julia
changeset 560:d1929491180b
Change variable names for som indecies to make them all concistent
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 30 Nov 2020 09:13:13 +0100 |
parents | 37a81dad36b9 |
children | 04d7b4eb63ef 8f7919a9b398 4aa7fe13a984 |
files | src/SbpOperators/constantstenciloperator.jl src/SbpOperators/quadrature/diagonal_inner_product.jl src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl |
diffstat | 3 files changed, 16 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/constantstenciloperator.jl Sun Nov 29 21:18:45 2020 +0100 +++ b/src/SbpOperators/constantstenciloperator.jl Mon Nov 30 09:13:13 2020 +0100 @@ -28,8 +28,7 @@ function apply_quadrature(op::ConstantStencilOperator, h::Real, v::T, i, N::Integer) where T r = getregion(i, closuresize(op), N) - i = Index(i, r) - return apply_quadrature(op, h, v, i, N) + return apply_quadrature(op, h, v, Index(i, r), N) end export apply_quadrature @@ -40,8 +39,7 @@ function apply_inverse_quadrature(op::ConstantStencilOperator, h_inv::Real, v::T, i, N::Integer) where T r = getregion(i, closuresize(op), N) - i = Index(i, r) - return apply_inverse_quadrature(op, h_inv, v, i, N) + return apply_inverse_quadrature(op, h_inv, v, Index(i, r), N) end export apply_inverse_quadrature
--- a/src/SbpOperators/quadrature/diagonal_inner_product.jl Sun Nov 29 21:18:45 2020 +0100 +++ b/src/SbpOperators/quadrature/diagonal_inner_product.jl Mon Nov 30 09:13:13 2020 +0100 @@ -17,24 +17,23 @@ LazyTensors.range_size(H::DiagonalInnerProduct) = H.size LazyTensors.domain_size(H::DiagonalInnerProduct) = H.size -function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Lower}) where T - return @inbounds H.h*H.quadratureClosure[Int(I)]*v[Int(I)] +function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds H.h*H.quadratureClosure[Int(i)]*v[Int(i)] end -function LazyTensors.apply(H::DiagonalInnerProduct{T},v::AbstractVector{T}, I::Index{Upper}) where T +function LazyTensors.apply(H::DiagonalInnerProduct{T},v::AbstractVector{T}, i::Index{Upper}) where T N = length(v); - return @inbounds H.h*H.quadratureClosure[N-Int(I)+1]*v[Int(I)] + return @inbounds H.h*H.quadratureClosure[N-Int(i)+1]*v[Int(i)] end -function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Interior}) where T - return @inbounds H.h*v[Int(I)] +function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Interior}) where T + return @inbounds H.h*v[Int(i)] end function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, i) where T N = length(v); r = getregion(i, closuresize(H), N) - I = Index(i, r) - return LazyTensors.apply(H, v, I) + return LazyTensors.apply(H, v, Index(i, r)) end LazyTensors.apply_transpose(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i)
--- a/src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl Sun Nov 29 21:18:45 2020 +0100 +++ b/src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl Mon Nov 30 09:13:13 2020 +0100 @@ -18,24 +18,23 @@ LazyTensors.domain_size(Hi::InverseDiagonalInnerProduct) = Hi.size -function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Lower}) where T - return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[Int(I)]*v[Int(I)] +function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[Int(i)]*v[Int(i)] end -function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Upper}) where T +function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Upper}) where T N = length(v); - return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[N-Int(I)+1]*v[Int(I)] + return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[N-Int(i)+1]*v[Int(i)] end -function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Interior}) where T - return @inbounds Hi.h_inv*v[Int(I)] +function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Interior}) where T + return @inbounds Hi.h_inv*v[Int(i)] end function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i) where T N = length(v); r = getregion(i, closuresize(Hi), N) - I = Index(i, r) - return LazyTensors.apply(Hi, v, I) + return LazyTensors.apply(Hi, v, Index(i, r)) end LazyTensors.apply_transpose(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(Hi,v,i)