changeset 560:d1929491180b

Change variable names for som indecies to make them all concistent
author Jonatan Werpers <jonatan@werpers.com>
date Mon, 30 Nov 2020 09:13:13 +0100
parents 37a81dad36b9
children 04d7b4eb63ef 8f7919a9b398 4aa7fe13a984
files src/SbpOperators/constantstenciloperator.jl src/SbpOperators/quadrature/diagonal_inner_product.jl src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl
diffstat 3 files changed, 16 insertions(+), 20 deletions(-) [+]
line wrap: on
line diff
--- a/src/SbpOperators/constantstenciloperator.jl	Sun Nov 29 21:18:45 2020 +0100
+++ b/src/SbpOperators/constantstenciloperator.jl	Mon Nov 30 09:13:13 2020 +0100
@@ -28,8 +28,7 @@
 
 function apply_quadrature(op::ConstantStencilOperator, h::Real, v::T, i, N::Integer) where T
     r = getregion(i, closuresize(op), N)
-    i = Index(i, r)
-    return apply_quadrature(op, h, v, i, N)
+    return apply_quadrature(op, h, v, Index(i, r), N)
 end
 export apply_quadrature
 
@@ -40,8 +39,7 @@
 
 function apply_inverse_quadrature(op::ConstantStencilOperator, h_inv::Real, v::T, i, N::Integer) where T
     r = getregion(i, closuresize(op), N)
-    i = Index(i, r)
-    return apply_inverse_quadrature(op, h_inv, v, i, N)
+    return apply_inverse_quadrature(op, h_inv, v, Index(i, r), N)
 end
 
 export apply_inverse_quadrature
--- a/src/SbpOperators/quadrature/diagonal_inner_product.jl	Sun Nov 29 21:18:45 2020 +0100
+++ b/src/SbpOperators/quadrature/diagonal_inner_product.jl	Mon Nov 30 09:13:13 2020 +0100
@@ -17,24 +17,23 @@
 LazyTensors.range_size(H::DiagonalInnerProduct) = H.size
 LazyTensors.domain_size(H::DiagonalInnerProduct) = H.size
 
-function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Lower}) where T
-    return @inbounds H.h*H.quadratureClosure[Int(I)]*v[Int(I)]
+function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Lower}) where T
+    return @inbounds H.h*H.quadratureClosure[Int(i)]*v[Int(i)]
 end
 
-function LazyTensors.apply(H::DiagonalInnerProduct{T},v::AbstractVector{T}, I::Index{Upper}) where T
+function LazyTensors.apply(H::DiagonalInnerProduct{T},v::AbstractVector{T}, i::Index{Upper}) where T
     N = length(v);
-    return @inbounds H.h*H.quadratureClosure[N-Int(I)+1]*v[Int(I)]
+    return @inbounds H.h*H.quadratureClosure[N-Int(i)+1]*v[Int(i)]
 end
 
-function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Interior}) where T
-    return @inbounds H.h*v[Int(I)]
+function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Interior}) where T
+    return @inbounds H.h*v[Int(i)]
 end
 
 function LazyTensors.apply(H::DiagonalInnerProduct{T},  v::AbstractVector{T}, i) where T
     N = length(v);
     r = getregion(i, closuresize(H), N)
-    I = Index(i, r)
-    return LazyTensors.apply(H, v, I)
+    return LazyTensors.apply(H, v, Index(i, r))
 end
 
 LazyTensors.apply_transpose(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i)
--- a/src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl	Sun Nov 29 21:18:45 2020 +0100
+++ b/src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl	Mon Nov 30 09:13:13 2020 +0100
@@ -18,24 +18,23 @@
 LazyTensors.domain_size(Hi::InverseDiagonalInnerProduct) = Hi.size
 
 
-function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Lower}) where T
-    return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[Int(I)]*v[Int(I)]
+function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Lower}) where T
+    return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[Int(i)]*v[Int(i)]
 end
 
-function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Upper}) where T
+function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Upper}) where T
     N = length(v);
-    return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[N-Int(I)+1]*v[Int(I)]
+    return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[N-Int(i)+1]*v[Int(i)]
 end
 
-function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Interior}) where T
-    return @inbounds Hi.h_inv*v[Int(I)]
+function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Interior}) where T
+    return @inbounds Hi.h_inv*v[Int(i)]
 end
 
 function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T},  v::AbstractVector{T}, i) where T
     N = length(v);
     r = getregion(i, closuresize(Hi), N)
-    I = Index(i, r)
-    return LazyTensors.apply(Hi, v, I)
+    return LazyTensors.apply(Hi, v, Index(i, r))
 end
 
 LazyTensors.apply_transpose(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(Hi,v,i)