Mercurial > repos > public > sbplib_julia
view test/testSbpOperators.jl @ 562:8f7919a9b398 feature/boundary_ops
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 30 Nov 2020 18:30:24 +0100 |
parents | 884be64e82d9 |
children | 15423a868d28 |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.RegionIndices using Sbplib.LazyTensors using LinearAlgebra @testset "SbpOperators" begin # @testset "apply_quadrature" begin # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") # h = 0.5 # # @test apply_quadrature(op, h, 1.0, 10, 100) == h # # N = 10 # qc = op.quadratureClosure # q = h.*(qc..., ones(N-2*closuresize(op))..., reverse(qc)...) # @assert length(q) == N # # for i ∈ 1:N # @test apply_quadrature(op, h, 1.0, i, N) == q[i] # end # # v = [2.,3.,2.,4.,5.,4.,3.,4.,5.,4.5] # for i ∈ 1:N # @test apply_quadrature(op, h, v[i], i, N) == q[i]*v[i] # end # end @testset "SecondDerivative" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") L = 3.5 g = EquidistantGrid(101, 0.0, L) Dₓₓ = SecondDerivative(g,op.innerStencil,op.closureStencils) f0(x) = 1. f1(x) = x f2(x) = 1/2*x^2 f3(x) = 1/6*x^3 f4(x) = 1/24*x^4 f5(x) = sin(x) f5ₓₓ(x) = -f5(x) v0 = evalOn(g,f0) v1 = evalOn(g,f1) v2 = evalOn(g,f2) v3 = evalOn(g,f3) v4 = evalOn(g,f4) v5 = evalOn(g,f5) @test Dₓₓ isa TensorMapping{T,1,1} where T @test Dₓₓ' isa TensorMapping{T,1,1} where T # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for v - monomial up to order 3. # Exact differentiation is measured point-wise. For other grid functions # the error is measured in the l2-norm. @test norm(Dₓₓ*v0) ≈ 0.0 atol=5e-10 @test norm(Dₓₓ*v1) ≈ 0.0 atol=5e-10 @test Dₓₓ*v2 ≈ v0 atol=5e-11 @test Dₓₓ*v3 ≈ v1 atol=5e-11 h = spacing(g)[1]; l2(v) = sqrt(h*sum(v.^2)) @test Dₓₓ*v4 ≈ v2 atol=5e-4 norm=l2 @test Dₓₓ*v5 ≈ -v5 atol=5e-4 norm=l2 end @testset "Laplace2D" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") Lx = 1.5 Ly = 3.2 g = EquidistantGrid((102,131), (0.0, 0.0), (Lx,Ly)) L = Laplace(g, op.innerStencil, op.closureStencils) f0(x,y) = 2. f1(x,y) = x+y f2(x,y) = 1/2*x^2 + 1/2*y^2 f3(x,y) = 1/6*x^3 + 1/6*y^3 f4(x,y) = 1/24*x^4 + 1/24*y^4 f5(x,y) = sin(x) + cos(y) f5ₓₓ(x,y) = -f5(x,y) v0 = evalOn(g,f0) v1 = evalOn(g,f1) v2 = evalOn(g,f2) v3 = evalOn(g,f3) v4 = evalOn(g,f4) v5 = evalOn(g,f5) v5ₓₓ = evalOn(g,f5ₓₓ) @test L isa TensorMapping{T,2,2} where T @test L' isa TensorMapping{T,2,2} where T # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for v - monomial up to order 3. # Exact differentiation is measured point-wise. For other grid functions # the error is measured in the H-norm. @test norm(L*v0) ≈ 0 atol=5e-10 @test norm(L*v1) ≈ 0 atol=5e-10 @test L*v2 ≈ v0 # Seems to be more accurate @test L*v3 ≈ v1 atol=5e-10 h = spacing(g) l2(v) = sqrt(prod(h)*sum(v.^2)) @test L*v4 ≈ v2 atol=5e-4 norm=l2 @test L*v5 ≈ v5ₓₓ atol=5e-4 norm=l2 end @testset "DiagonalInnerProduct" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") L = 2.3 g = EquidistantGrid(77, 0.0, L) H = DiagonalInnerProduct(g,op.quadratureClosure) v = ones(Float64, size(g)) @test H isa TensorMapping{T,1,1} where T @test H' isa TensorMapping{T,1,1} where T @test sum(H*v) ≈ L @test H*v == H'*v end @testset "Quadrature" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") Lx = 2.3 Ly = 5.2 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) Q = Quadrature(g, op.quadratureClosure) @test Q isa TensorMapping{T,2,2} where T @test Q' isa TensorMapping{T,2,2} where T v = ones(Float64, size(g)) @test sum(Q*v) ≈ Lx*Ly v = 2*ones(Float64, size(g)) @test_broken sum(Q*v) ≈ 2*Lx*Ly @test Q*v == Q'*v end @testset "InverseDiagonalInnerProduct" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") L = 2.3 g = EquidistantGrid(77, 0.0, L) H = DiagonalInnerProduct(g, op.quadratureClosure) Hi = InverseDiagonalInnerProduct(g,op.quadratureClosure) v = evalOn(g, x->sin(x)) @test Hi isa TensorMapping{T,1,1} where T @test Hi' isa TensorMapping{T,1,1} where T @test Hi*H*v ≈ v @test Hi*v == Hi'*v end @testset "InverseQuadrature" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") Lx = 7.3 Ly = 8.2 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) Q = Quadrature(g, op.quadratureClosure) Qinv = InverseQuadrature(g, op.quadratureClosure) v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) @test Qinv isa TensorMapping{T,2,2} where T @test Qinv' isa TensorMapping{T,2,2} where T @test_broken Qinv*(Q*v) ≈ v @test Qinv*v == Qinv'*v end @testset "BoundaryRestrictrion" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") g = EquidistantGrid(4, 0.0, 1.0) e_l = BoundaryRestriction(g,op.eClosure,Lower()) e_r = BoundaryRestriction(g,op.eClosure,Upper()) v = evalOn(g,x->1+x^2) u = fill(3.124) @test (e_l*v)[] == v[1] @test (e_r*v)[] == v[end] @test e_l'*u == [u[], 0, 0, 0] @test e_r'*u == [0, 0, 0, u[]] @test_throws BoundsError (e_l*v)[Index{Lower}(3)] @test_throws BoundsError (e_r*v)[Index{Upper}(3)] g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) e_w = boundary_restriction(g, op.eClosure, CartesianBoundary{1,Lower}()) e_e = boundary_restriction(g, op.eClosure, CartesianBoundary{1,Upper}()) e_s = boundary_restriction(g, op.eClosure, CartesianBoundary{2,Lower}()) e_n = boundary_restriction(g, op.eClosure, CartesianBoundary{2,Upper}()) v = zeros(Float64, 4, 5) v[:,5] = [1, 2, 3,4] v[:,4] = [1, 2, 3,4] v[:,3] = [4, 5, 6, 7] v[:,2] = [7, 8, 9, 10] v[:,1] = [10, 11, 12, 13] @test e_w isa TensorMapping{T,1,2} where T @test e_w' isa TensorMapping{T,2,1} where T @test domain_size(e_w) == (4,5) @test domain_size(e_e) == (4,5) @test domain_size(e_s) == (4,5) @test domain_size(e_n) == (4,5) @test range_size(e_w) == (5,) @test range_size(e_e) == (5,) @test range_size(e_s) == (4,) @test range_size(e_n) == (4,) I_w = [(Index{Lower}(1),), (Index{Interior}(2),), (Index{Interior}(3),), (Index{Interior}(4),), (Index{Upper}(5),)] v_w = [10,7,4,1.0,1]; for i = 1:length(I_w) @test (e_w*v)[I_w[i]...] == v_w[i]; end @test e_w*v == [10,7,4,1.0,1] @test e_e*v == [13,10,7,4,4.0] @test e_s*v == [10,11,12,13.0] @test e_n*v == [1,2,3,4.0] g_x = [1,2,3,4.0] g_y = [5,4,3,2,1.0] G_w = zeros(Float64, (4,5)) G_w[1,:] = g_y G_e = zeros(Float64, (4,5)) G_e[4,:] = g_y G_s = zeros(Float64, (4,5)) G_s[:,1] = g_x G_n = zeros(Float64, (4,5)) G_n[:,5] = g_x @test e_w'*g_y == G_w @test e_e'*g_y == G_e @test e_s'*g_x == G_s @test e_n'*g_x == G_n end # # @testset "NormalDerivative" begin # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) # # d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) # d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) # d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) # d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) # # # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) # v∂x = evalOn(g, (x,y)-> 2*x + y) # v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) # # @test d_w isa TensorMapping{T,2,1} where T # @test d_w' isa TensorMapping{T,1,2} where T # # @test domain_size(d_w, (3,2)) == (2,) # @test domain_size(d_e, (3,2)) == (2,) # @test domain_size(d_s, (3,2)) == (3,) # @test domain_size(d_n, (3,2)) == (3,) # # @test size(d_w'*v) == (6,) # @test size(d_e'*v) == (6,) # @test size(d_s'*v) == (5,) # @test size(d_n'*v) == (5,) # # @test d_w'*v .≈ v∂x[1,:] # @test d_e'*v .≈ v∂x[5,:] # @test d_s'*v .≈ v∂y[:,1] # @test d_n'*v .≈ v∂y[:,6] # # # d_x_l = zeros(Float64, 5) # d_x_u = zeros(Float64, 5) # for i ∈ eachindex(d_x_l) # d_x_l[i] = op.dClosure[i-1] # d_x_u[i] = -op.dClosure[length(d_x_u)-i] # end # # d_y_l = zeros(Float64, 6) # d_y_u = zeros(Float64, 6) # for i ∈ eachindex(d_y_l) # d_y_l[i] = op.dClosure[i-1] # d_y_u[i] = -op.dClosure[length(d_y_u)-i] # end # # function prod_matrix(x,y) # G = zeros(Float64, length(x), length(y)) # for I ∈ CartesianIndices(G) # G[I] = x[I[1]]*y[I[2]] # end # # return G # end # # g_x = [1,2,3,4.0,5] # g_y = [5,4,3,2,1.0,11] # # G_w = prod_matrix(d_x_l, g_y) # G_e = prod_matrix(d_x_u, g_y) # G_s = prod_matrix(g_x, d_y_l) # G_n = prod_matrix(g_x, d_y_u) # # # @test size(d_w*g_y) == (UnknownDim,6) # @test size(d_e*g_y) == (UnknownDim,6) # @test size(d_s*g_x) == (5,UnknownDim) # @test size(d_n*g_x) == (5,UnknownDim) # # # These tests should be moved to where they are possible (i.e we know what the grid should be) # @test_broken d_w*g_y .≈ G_w # @test_broken d_e*g_y .≈ G_e # @test_broken d_s*g_x .≈ G_s # @test_broken d_n*g_x .≈ G_n # end # # @testset "BoundaryQuadrature" begin # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) # # H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) # H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) # H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) # H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) # # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) # # function get_quadrature(N) # qc = op.quadratureClosure # q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) # @assert length(q) == N # return q # end # # v_w = v[1,:] # v_e = v[10,:] # v_s = v[:,1] # v_n = v[:,11] # # q_x = spacing(g)[1].*get_quadrature(10) # q_y = spacing(g)[2].*get_quadrature(11) # # @test H_w isa TensorOperator{T,1} where T # # @test domain_size(H_w, (3,)) == (3,) # @test domain_size(H_n, (3,)) == (3,) # # @test range_size(H_w, (3,)) == (3,) # @test range_size(H_n, (3,)) == (3,) # # @test size(H_w*v_w) == (11,) # @test size(H_e*v_e) == (11,) # @test size(H_s*v_s) == (10,) # @test size(H_n*v_n) == (10,) # # @test H_w*v_w .≈ q_y.*v_w # @test H_e*v_e .≈ q_y.*v_e # @test H_s*v_s .≈ q_x.*v_s # @test H_n*v_n .≈ q_x.*v_n # # @test H_w'*v_w == H_w'*v_w # @test H_e'*v_e == H_e'*v_e # @test H_s'*v_s == H_s'*v_s # @test H_n'*v_n == H_n'*v_n # end end