Mercurial > repos > public > sbplib_julia
changeset 302:6fa2ba769ae3
Create 1D tensor mapping for inverse diagonal norm, and make the multi-dimensional inverse quadrature use those. Move InverseQudrature from laplace.jl into InverseQuadrature.jl
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 23 Jun 2020 18:56:59 +0200 |
parents | 417b767c847f |
children | 5645021683d3 bd09d67ebb22 |
files | SbpOperators/src/InverseQuadrature.jl SbpOperators/src/laplace/laplace.jl |
diffstat | 2 files changed, 75 insertions(+), 25 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SbpOperators/src/InverseQuadrature.jl Tue Jun 23 18:56:59 2020 +0200 @@ -0,0 +1,75 @@ +""" + Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the inverse quadrature operator `Qi` of Dim dimension as a TensorOperator +The multi-dimensional tensor operator consists of a tuple of 1D InverseDiagonalNorm +tensor operators. +""" +struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} + Hi::NTuple{Dim,InverseDiagonalNorm{T,N,M}} +end +export Quadrature + +LazyTensors.domain_size(Qi::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size + +function LazyTensors.apply(Qi::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} + error("not implemented") +end + +LazyTensors.apply_transpose(Qi::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I) + +@inline function LazyTensors.apply(Qi::Quadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T + @inbounds q = apply(Qi.Hi[1], v , I[1]) + return q +end + +@inline function LazyTensors.apply(Qi::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T + # Quadrature in x direction + @inbounds vx = view(v, :, Int(I[2])) + @inbounds qx_inv = apply(Qi.Hi[1], vx , I[1]) + # Quadrature in y-direction + @inbounds vy = view(v, Int(I[1]), :) + @inbounds qy_inv = apply(Qi.Hi[2], vy, I[2]) + return qx_inv*qy_inv +end + +""" + Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the quadrature operator `Hi` of Dim dimension as a TensorMapping +""" +struct InverseDiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} + h_inv::T # The reciprocl grid spacing could be included in the stencil already. Preferable? + closure::NTuple{M,T} + #TODO: Write a nice constructor +end + +@inline function LazyTensors.apply(Hi::InverseDiagonalNorm{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T + return @inbounds apply(Hi, v, I[1]) +end + +LazyTensors.apply_transpose(Hi::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(Hi,v,I) + +@inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)] +end +@inline LazyTensors.apply(Hi::InverseDiagonalNorm,v::AbstractVector{T}, i::Index{Upper}) where T + N = length(v); + return @inbounds Hi.h_inv*Hi.closure[N-Int(i)+1]v[Int(i)] +end + +@inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Interior}) where T + return @inbounds Hi.h_inv*v[Int(i)] +end + +function LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T + N = length(v); + r = getregion(Int(index), closuresize(Hi), N) + i = Index(Int(index), r) + return LazyTensors.apply(Hi, v, i) +end +export LazyTensors.apply + +function closuresize(Hi::InverseDiagonalNorm{T<:Real,N,M}) where {T,N,M} + return M +end
--- a/SbpOperators/src/laplace/laplace.jl Tue Jun 23 18:53:20 2020 +0200 +++ b/SbpOperators/src/laplace/laplace.jl Tue Jun 23 18:56:59 2020 +0200 @@ -45,31 +45,6 @@ boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) export quadrature - -""" - InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} - -Implements the inverse quadrature operator `inv(H)` of Dim dimension as a TensorMapping -""" -struct InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} - op::D2{T,N,M,K} - grid::EquidistantGrid{Dim,T} -end -export InverseQuadrature - -LazyTensors.domain_size(H_inv::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size - -@inline function LazyTensors.apply(H_inv::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T - N = size(H_inv.grid) - # Inverse quadrature in x direction - @inbounds q_inv = apply_inverse_quadrature(H_inv.op, inverse_spacing(H_inv.grid)[1], v[I] , I[1], N[1]) - # Inverse quadrature in y-direction - @inbounds q_inv = apply_inverse_quadrature(H_inv.op, inverse_spacing(H_inv.grid)[2], q_inv, I[2], N[2]) - return q_inv -end - -LazyTensors.apply_transpose(H_inv::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H_inv,v,I) - """ BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1}