Mercurial > repos > public > sbplib_julia
changeset 301:417b767c847f
Rename DiagonalQuadrature to DiagonalNorm
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 23 Jun 2020 18:53:20 +0200 |
parents | b00eea62c78e |
children | 6fa2ba769ae3 |
files | SbpOperators/src/Quadrature.jl |
diffstat | 1 files changed, 11 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/SbpOperators/src/Quadrature.jl Tue Jun 23 17:32:54 2020 +0200 +++ b/SbpOperators/src/Quadrature.jl Tue Jun 23 18:53:20 2020 +0200 @@ -3,11 +3,11 @@ Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} Implements the quadrature operator `Q` of Dim dimension as a TensorMapping -The multi-dimensional tensor operator consists of a tuple of 1D DiagonalQuadrature +The multi-dimensional tensor operator consists of a tuple of 1D DiagonalNorm H tensor operators. """ struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} - H::NTuple{Dim,DiagonalQuadrature{T,N,M}} + H::NTuple{Dim,DiagonalNorm{T,N,M}} end export Quadrature @@ -35,35 +35,35 @@ end """ - Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} -Implements the quadrature operator `H` of Dim dimension as a TensorMapping +Implements the diagnoal norm operator `H` of Dim dimension as a TensorMapping """ -struct DiagonalQuadrature{T<:Real,N,M} <: TensorOperator{T,1} +struct DiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} h::T # The grid spacing could be included in the stencil already. Preferable? closure::NTuple{M,T} #TODO: Write a nice constructor end -@inline function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T +@inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T return @inbounds apply(H, v, I[1]) end LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H,v,I) -@inline LazyTensors.apply(H::DiagonalQuadrature, v::AbstractVector{T}, i::Index{Lower}) where T +@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, i::Index{Lower}) where T return @inbounds H.h*H.closure[Int(i)]*v[Int(i)] end -@inline LazyTensors.apply(H::DiagonalQuadrature,v::AbstractVector{T}, i::Index{Upper}) where T +@inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, i::Index{Upper}) where T N = length(v); return @inbounds H.h*H.closure[N-Int(i)+1]v[Int(i)] end -@inline LazyTensors.apply(H::DiagonalQuadrature, v::AbstractVector{T}, i::Index{Interior}) where T +@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, i::Index{Interior}) where T return @inbounds H.h*v[Int(i)] end -function LazyTensors.apply(H::DiagonalQuadrature, v::AbstractVector{T}, index::Index{Unknown}) where T +function LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T N = length(v); r = getregion(Int(index), closuresize(H), N) i = Index(Int(index), r) @@ -71,6 +71,6 @@ end export LazyTensors.apply -function closuresize(H::DiagonalQuadrature{T<:Real,N,M}) where {T,N,M} +function closuresize(H::DiagonalNorm{T<:Real,N,M}) where {T,N,M} return M end