Mercurial > repos > public > sbplib_julia
changeset 304:5645021683d3
Merge
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 09 Sep 2020 20:41:31 +0200 |
parents | d5475ad78b28 (current diff) 6fa2ba769ae3 (diff) |
children | 7a7d9daa9eb7 d244f2e5f822 |
files | |
diffstat | 4 files changed, 164 insertions(+), 58 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SbpOperators/src/InverseQuadrature.jl Wed Sep 09 20:41:31 2020 +0200 @@ -0,0 +1,75 @@ +""" + Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the inverse quadrature operator `Qi` of Dim dimension as a TensorOperator +The multi-dimensional tensor operator consists of a tuple of 1D InverseDiagonalNorm +tensor operators. +""" +struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} + Hi::NTuple{Dim,InverseDiagonalNorm{T,N,M}} +end +export Quadrature + +LazyTensors.domain_size(Qi::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size + +function LazyTensors.apply(Qi::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} + error("not implemented") +end + +LazyTensors.apply_transpose(Qi::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I) + +@inline function LazyTensors.apply(Qi::Quadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T + @inbounds q = apply(Qi.Hi[1], v , I[1]) + return q +end + +@inline function LazyTensors.apply(Qi::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T + # Quadrature in x direction + @inbounds vx = view(v, :, Int(I[2])) + @inbounds qx_inv = apply(Qi.Hi[1], vx , I[1]) + # Quadrature in y-direction + @inbounds vy = view(v, Int(I[1]), :) + @inbounds qy_inv = apply(Qi.Hi[2], vy, I[2]) + return qx_inv*qy_inv +end + +""" + Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the quadrature operator `Hi` of Dim dimension as a TensorMapping +""" +struct InverseDiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} + h_inv::T # The reciprocl grid spacing could be included in the stencil already. Preferable? + closure::NTuple{M,T} + #TODO: Write a nice constructor +end + +@inline function LazyTensors.apply(Hi::InverseDiagonalNorm{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T + return @inbounds apply(Hi, v, I[1]) +end + +LazyTensors.apply_transpose(Hi::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(Hi,v,I) + +@inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)] +end +@inline LazyTensors.apply(Hi::InverseDiagonalNorm,v::AbstractVector{T}, i::Index{Upper}) where T + N = length(v); + return @inbounds Hi.h_inv*Hi.closure[N-Int(i)+1]v[Int(i)] +end + +@inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Interior}) where T + return @inbounds Hi.h_inv*v[Int(i)] +end + +function LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T + N = length(v); + r = getregion(Int(index), closuresize(Hi), N) + i = Index(Int(index), r) + return LazyTensors.apply(Hi, v, i) +end +export LazyTensors.apply + +function closuresize(Hi::InverseDiagonalNorm{T<:Real,N,M}) where {T,N,M} + return M +end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SbpOperators/src/Quadrature.jl Wed Sep 09 20:41:31 2020 +0200 @@ -0,0 +1,76 @@ +# At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings +""" + Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the quadrature operator `Q` of Dim dimension as a TensorMapping +The multi-dimensional tensor operator consists of a tuple of 1D DiagonalNorm H +tensor operators. +""" +struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} + H::NTuple{Dim,DiagonalNorm{T,N,M}} +end +export Quadrature + +LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size + +function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} + error("not implemented") +end + +LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I) + +@inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T + @inbounds q = apply(Q.H[1], v , I[1]) + return q +end + +@inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T + # Quadrature in x direction + @inbounds vx = view(v, :, Int(I[2])) + @inbounds qx = apply(Q.H[1], vx , I[1]) + # Quadrature in y-direction + @inbounds vy = view(v, Int(I[1]), :) + @inbounds qy = apply(Q.H[2], vy, I[2]) + return qx*qy +end + +""" + DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the diagnoal norm operator `H` of Dim dimension as a TensorMapping +""" +struct DiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} + h::T # The grid spacing could be included in the stencil already. Preferable? + closure::NTuple{M,T} + #TODO: Write a nice constructor +end + +@inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T + return @inbounds apply(H, v, I[1]) +end + +LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H,v,I) + +@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds H.h*H.closure[Int(i)]*v[Int(i)] +end +@inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, i::Index{Upper}) where T + N = length(v); + return @inbounds H.h*H.closure[N-Int(i)+1]v[Int(i)] +end + +@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, i::Index{Interior}) where T + return @inbounds H.h*v[Int(i)] +end + +function LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T + N = length(v); + r = getregion(Int(index), closuresize(H), N) + i = Index(Int(index), r) + return LazyTensors.apply(H, v, i) +end +export LazyTensors.apply + +function closuresize(H::DiagonalNorm{T<:Real,N,M}) where {T,N,M} + return M +end
--- a/SbpOperators/src/laplace/laplace.jl Wed Sep 09 20:41:12 2020 +0200 +++ b/SbpOperators/src/laplace/laplace.jl Wed Sep 09 20:41:31 2020 +0200 @@ -2,8 +2,8 @@ Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} Implements the Laplace operator `L` in Dim dimensions as a tensor operator -The multi-dimensional tensor operator simply consists of a tuple of the 1D -Laplace tensor operator as defined by ConstantLaplaceOperator. +The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative +tensor operators. """ struct Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} D2::NTuple(Dim,SecondDerivative{T,N,M,K}) @@ -17,20 +17,23 @@ error("not implemented") end +function LazyTensors.apply_transpose(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} = LazyTensors.apply(L, v, I) + # u = L*v function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T - return apply(L.D2[1],v,I) + @inbounds u = apply(L.D2[1],v,I) + return u end @inline function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T # 2nd x-derivative @inbounds vx = view(v, :, Int(I[2])) - @inbounds uᵢ = apply(L.D2[1], vx , (I[1],)) #Tuple conversion here is ugly. How to do it? Should we use indexing here? + @inbounds uᵢ = apply(L.D2[1], vx , I[1]) # 2nd y-derivative @inbounds vy = view(v, Int(I[1]), :) - @inbounds uᵢ += apply(L.D2[2], vy , (I[2],)) #Tuple conversion here is ugly. How to do it? + @inbounds uᵢ += apply(L.D2[2], vy , I[2]) return uᵢ end @@ -42,56 +45,6 @@ boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) export quadrature -# At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings -""" - Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} - -Implements the quadrature operator `H` of Dim dimension as a TensorMapping -""" -struct Quadrature{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} - op::D2{T,N,M,K} - grid::EquidistantGrid{Dim,T} -end -export Quadrature - -LazyTensors.domain_size(H::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size - -@inline function LazyTensors.apply(H::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T - N = size(H.grid) - # Quadrature in x direction - @inbounds q = apply_quadrature(H.op, spacing(H.grid)[1], v[I] , I[1], N[1]) - # Quadrature in y-direction - @inbounds q = apply_quadrature(H.op, spacing(H.grid)[2], q, I[2], N[2]) - return q -end - -LazyTensors.apply_transpose(H::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H,v,I) - - -""" - InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} - -Implements the inverse quadrature operator `inv(H)` of Dim dimension as a TensorMapping -""" -struct InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} - op::D2{T,N,M,K} - grid::EquidistantGrid{Dim,T} -end -export InverseQuadrature - -LazyTensors.domain_size(H_inv::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size - -@inline function LazyTensors.apply(H_inv::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T - N = size(H_inv.grid) - # Inverse quadrature in x direction - @inbounds q_inv = apply_inverse_quadrature(H_inv.op, inverse_spacing(H_inv.grid)[1], v[I] , I[1], N[1]) - # Inverse quadrature in y-direction - @inbounds q_inv = apply_inverse_quadrature(H_inv.op, inverse_spacing(H_inv.grid)[2], q_inv, I[2], N[2]) - return q_inv -end - -LazyTensors.apply_transpose(H_inv::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H_inv,v,I) - """ BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1}
--- a/SbpOperators/src/laplace/secondderivative.jl Wed Sep 09 20:41:12 2020 +0200 +++ b/SbpOperators/src/laplace/secondderivative.jl Wed Sep 09 20:41:31 2020 +0200 @@ -18,10 +18,12 @@ LazyTensors.domain_size(D2::SecondDerivative, range_size::NTuple{1,Integer}) = range_size -function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T - return apply(D2, v, I[1]) +@inline function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T + return @inbounds apply(D2, v, I[1]) end +function LazyTensors.apply_transpose(D2::SecondDerivative{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T = LazyTensors.apply(D2, v, I) + # Apply for different regions Lower/Interior/Upper or Unknown region @inline function LazyTensors.apply(D2::SecondDerivative, v::AbstractVector, i::Index{Lower}) return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.closureStencils[Int(i)], v, Int(i)) @@ -43,6 +45,6 @@ return apply(D2, v, i) end -function closuresize(D2::SecondDerivative{T<:Real,N,M,K}) where T,N,M,K +function closuresize(D2::SecondDerivative{T<:Real,N,M,K}) where {T,N,M,K} return M end