Mercurial > repos > public > sbplib_julia
view src/SbpOperators/volumeops/laplace/laplace.jl @ 1600:b2496b001297 feature/boundary_conditions
REVIEW: Forgot to save...
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 29 May 2024 22:44:18 +0200 |
parents | 37b05221beda |
children | 3e7438e2a033 |
line wrap: on
line source
""" Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} The Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a `LazyTensor`. """ struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} D::TM # Difference operator stencil_set::StencilSet # Stencil set of the operator end """ Laplace(g::Grid, stencil_set::StencilSet) Creates the `Laplace` operator `Δ` on `g` given `stencil_set`. See also [`laplace`](@ref). """ function Laplace(g::Grid, stencil_set::StencilSet) Δ = laplace(g, stencil_set) return Laplace(Δ, stencil_set) end LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. # Base.show(io::IO, L::Laplace) = ... """ laplace(g::Grid, stencil_set) Creates the Laplace operator operator `Δ` as a `LazyTensor` on `g`. `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `g`. The approximation depends on the type of grid and the stencil set. See also: [`second_derivative`](@ref). """ function laplace end function laplace(g::TensorGrid, stencil_set) # return mapreduce(+, enumerate(g.grids)) do (i, gᵢ) # Δᵢ = laplace(gᵢ, stencil_set) # LazyTensors.inflate(Δᵢ, size(g), i) # end Δ = LazyTensors.inflate(laplace(g.grids[1], stencil_set), size(g), 1) for d = 2:ndims(g) Δ += LazyTensors.inflate(laplace(g.grids[d], stencil_set), size(g), d) end return Δ end laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) # REVIEW: I think the handling of tuning parameters below should be through kwargs instead. """ sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) The operators required to construct the SAT for imposing a Dirichlet condition. `tuning` specifies the strength of the penalty. See See also: [`sat`,`DirichletCondition`, `positivity_decomposition`](@ref). """ function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) id = bc.id set = Δ.stencil_set H⁻¹ = inverse_inner_product(g,set) Hᵧ = inner_product(boundary_grid(g, id), set) e = boundary_restriction(g, set, id) d = normal_derivative(g, set, id) B = positivity_decomposition(Δ, g, bc, tuning) sat_op = H⁻¹∘(d' - B*e')∘Hᵧ return sat_op, e end BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition) = BoundaryConditions.sat_tensors(Δ, g, bc, (1.,1.)) # REVIEW: Should be possible to replace this with argument default values. """ sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) The operators required to construct the SAT for imposing a Neumann condition See also: [`sat`,`NeumannCondition`](@ref). """ function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) id = bc.id set = Δ.stencil_set H⁻¹ = inverse_inner_product(g,set) Hᵧ = inner_product(boundary_grid(g, id), set) e = boundary_restriction(g, set, id) d = normal_derivative(g, set, id) sat_op = -H⁻¹∘e'∘Hᵧ return sat_op, d end # REVIEW: This function assumes a TensorGrid right? In that case there should probably be a type annotation to get clearer error messages. function positivity_decomposition(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) pos_prop = positivity_properties(Δ) h = spacing(orthogonal_grid(g, bc.id)) θ_H = pos_prop.theta_H τ_H = tuning[1]*ndims(g)/(h*θ_H) θ_R = pos_prop.theta_R τ_R = tuning[2]/(h*θ_R) B = τ_H + τ_R return B end positivity_properties(Δ::Laplace) = parse_named_tuple(Δ.stencil_set["Positivity"]["D2"]) # REVIEW: Can this function extract theta_H from the inner product instead of storing it twice in the TOML?