Mercurial > repos > public > sbplib_julia
view src/SbpOperators/volumeops/laplace/laplace.jl @ 2015:5c2448d6a201 feature/grids/geometry_functions tip
Structure tests a bit more
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 09 May 2025 15:57:38 +0200 |
parents | b5690ab5f0b8 |
children | f3d7e2d7a43f |
line wrap: on
line source
""" Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} The Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a `LazyTensor`. """ struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} D::TM # Difference operator stencil_set::StencilSet # Stencil set of the operator end """ Laplace(g::Grid, stencil_set::StencilSet) Creates the `Laplace` operator `Δ` on `g` given `stencil_set`. See also [`laplace`](@ref). """ function Laplace(g::Grid, stencil_set::StencilSet) Δ = laplace(g, stencil_set) return Laplace(Δ, stencil_set) end LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. # Base.show(io::IO, L::Laplace) = ... """ laplace(g::Grid, stencil_set) Creates the Laplace operator operator `Δ` as a `LazyTensor` on `g`. `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `g`. The approximation depends on the type of grid and the stencil set. See also: [`second_derivative`](@ref). """ function laplace end function laplace(g::TensorGrid, stencil_set) # return mapreduce(+, enumerate(g.grids)) do (i, gᵢ) # Δᵢ = laplace(gᵢ, stencil_set) # LazyTensors.inflate(Δᵢ, size(g), i) # end Δ = LazyTensors.inflate(laplace(g.grids[1], stencil_set), size(g), 1) for d = 2:ndims(g) Δ += LazyTensors.inflate(laplace(g.grids[d], stencil_set), size(g), d) end return Δ end laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) """ sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning, R_tuning) The operators required to construct the SAT for imposing a Dirichlet condition. `H_tuning` and `R_tuning` are used to specify the strength of the penalty. See also: [`sat`](@ref), [`DirichletCondition`](@ref), [`positivity_decomposition`](@ref). """ function sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning = 1., R_tuning = 1.) id = boundary(bc) set = Δ.stencil_set H⁻¹ = inverse_inner_product(g,set) Hᵧ = inner_product(boundary_grid(g, id), set) e = boundary_restriction(g, set, id) d = normal_derivative(g, set, id) B = positivity_decomposition(Δ, g, boundary(bc); H_tuning, R_tuning) penalty_tensor = H⁻¹∘(d' - B*e')∘Hᵧ return penalty_tensor, e end """ sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) The operators required to construct the SAT for imposing a Neumann condition. See also: [`sat`](@ref), [`NeumannCondition`](@ref). """ function sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) id = boundary(bc) set = Δ.stencil_set H⁻¹ = inverse_inner_product(g,set) Hᵧ = inner_product(boundary_grid(g, id), set) e = boundary_restriction(g, set, id) d = normal_derivative(g, set, id) penalty_tensor = -H⁻¹∘e'∘Hᵧ return penalty_tensor, d end """ positivity_decomposition(Δ::Laplace, g::Grid, b::BoundaryIdentifier; H_tuning, R_tuning) Constructs the scalar `B` such that `d' - 1/2*B*e'` is symmetric positive definite with respect to the boundary quadrature. Here `d` is the normal derivative and `e` is the boundary restriction operator. `B` can then be used to form a symmetric and energy stable penalty for a Dirichlet condition. The parameters `H_tuning` and `R_tuning` are used to specify the strength of the penalty and must be greater than 1. For details we refer to <https://doi.org/10.1016/j.jcp.2020.109294> """ function positivity_decomposition(Δ::Laplace, g::Grid, b::BoundaryIdentifier; H_tuning, R_tuning) @assert(H_tuning ≥ 1.) @assert(R_tuning ≥ 1.) Nτ_H, τ_R = positivity_limits(Δ,g,b) return H_tuning*Nτ_H + R_tuning*τ_R end function positivity_limits(Δ::Laplace, g::EquidistantGrid, b::BoundaryIdentifier) h = spacing(g) θ_H = parse_scalar(Δ.stencil_set["H"]["closure"][1]) θ_R = parse_scalar(Δ.stencil_set["D2"]["positivity"]["theta_R"]) τ_H = one(eltype(Δ))/(h*θ_H) τ_R = one(eltype(Δ))/(h*θ_R) return τ_H, τ_R end function positivity_limits(Δ::Laplace, g::TensorGrid, b::BoundaryIdentifier) τ_H, τ_R = positivity_limits(Δ, g.grids[grid_id(b)], b) return τ_H*ndims(g), τ_R end