Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1600:b2496b001297 feature/boundary_conditions
REVIEW: Forgot to save...
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 29 May 2024 22:44:18 +0200 |
parents | 37b05221beda |
children | 3e7438e2a033 |
comparison
equal
deleted
inserted
replaced
1599:37b05221beda | 1600:b2496b001297 |
---|---|
51 end | 51 end |
52 return Δ | 52 return Δ |
53 end | 53 end |
54 laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) | 54 laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) |
55 | 55 |
56 # REVIEW: I think the handling of tuning parameters below should be through kwargs instead. | |
57 | |
56 """ | 58 """ |
57 sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) | 59 sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) |
58 | 60 |
59 The operators required to construct the SAT for imposing a Dirichlet condition. | 61 The operators required to construct the SAT for imposing a Dirichlet condition. |
60 `tuning` specifies the strength of the penalty. See | 62 `tuning` specifies the strength of the penalty. See |
70 d = normal_derivative(g, set, id) | 72 d = normal_derivative(g, set, id) |
71 B = positivity_decomposition(Δ, g, bc, tuning) | 73 B = positivity_decomposition(Δ, g, bc, tuning) |
72 sat_op = H⁻¹∘(d' - B*e')∘Hᵧ | 74 sat_op = H⁻¹∘(d' - B*e')∘Hᵧ |
73 return sat_op, e | 75 return sat_op, e |
74 end | 76 end |
75 BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition) = BoundaryConditions.sat_tensors(Δ, g, bc, (1.,1.)) | 77 BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition) = BoundaryConditions.sat_tensors(Δ, g, bc, (1.,1.)) # REVIEW: Should be possible to replace this with argument default values. |
76 | 78 |
77 """ | 79 """ |
78 sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) | 80 sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) |
79 | 81 |
80 The operators required to construct the SAT for imposing a Neumann condition | 82 The operators required to construct the SAT for imposing a Neumann condition |
92 | 94 |
93 sat_op = -H⁻¹∘e'∘Hᵧ | 95 sat_op = -H⁻¹∘e'∘Hᵧ |
94 return sat_op, d | 96 return sat_op, d |
95 end | 97 end |
96 | 98 |
99 # REVIEW: This function assumes a TensorGrid right? In that case there should probably be a type annotation to get clearer error messages. | |
97 function positivity_decomposition(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) | 100 function positivity_decomposition(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) |
98 pos_prop = positivity_properties(Δ) | 101 pos_prop = positivity_properties(Δ) |
99 h = spacing(orthogonal_grid(g, bc.id)) | 102 h = spacing(orthogonal_grid(g, bc.id)) |
100 θ_H = pos_prop.theta_H | 103 θ_H = pos_prop.theta_H |
101 τ_H = tuning[1]*ndims(g)/(h*θ_H) | 104 τ_H = tuning[1]*ndims(g)/(h*θ_H) |