Mercurial > repos > public > sbplib_julia
view test/SbpOperators/boundaryops/normal_derivative_test.jl @ 950:97e9a8337a86 feature/laplace_opset
Review: broadcast instead of map in some places
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 14 Mar 2022 08:06:50 +0100 |
parents | 7168d28b03e3 |
children | 775d5513da8f |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.LazyTensors using Sbplib.RegionIndices import Sbplib.SbpOperators.BoundaryOperator @testset "normal_derivative" begin g_1D = EquidistantGrid(11, 0.0, 1.0) g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) @testset "normal_derivative" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) d_closure = parse_stencil(stencil_set["d1"]["closure"]) @testset "1D" begin d_l = normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) @test d_l == normal_derivative(g_1D, stencil_set, CartesianBoundary{1,Lower}()) @test d_l isa BoundaryOperator{T,Lower} where T @test d_l isa TensorMapping{T,0,1} where T end @testset "2D" begin d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) Ix = IdentityMapping{Float64}((size(g_2D)[1],)) Iy = IdentityMapping{Float64}((size(g_2D)[2],)) d_l = normal_derivative(restrict(g_2D,1),d_closure,CartesianBoundary{1,Lower}()) d_r = normal_derivative(restrict(g_2D,2),d_closure,CartesianBoundary{1,Upper}()) @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) @test d_w == d_l⊗Iy @test d_n == Ix⊗d_r @test d_w isa TensorMapping{T,1,2} where T @test d_n isa TensorMapping{T,1,2} where T end end @testset "Accuracy" begin v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) v∂x = evalOn(g_2D, (x,y)-> 2*x + y) v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) # TODO: Test for higher order polynomials? @testset "2nd order" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) d_closure = parse_stencil(stencil_set["d1"]["closure"]) d_w, d_e, d_s, d_n = map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D)) # REVIEW: Would prefere to write this as # d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D)) # to avoid the line break @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 end @testset "4th order" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) d_closure = parse_stencil(stencil_set["d1"]["closure"]) d_w, d_e, d_s, d_n = map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D)) # REVIEW: Same as above @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 end end end