Mercurial > repos > public > sbplib_julia
view test/SbpOperators/boundaryops/normal_derivative_test.jl @ 2015:5c2448d6a201 feature/grids/geometry_functions tip
Structure tests a bit more
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 09 May 2025 15:57:38 +0200 |
parents | 471a948cd2b2 |
children | f3d7e2d7a43f |
line wrap: on
line source
using Test using Diffinitive.SbpOperators using Diffinitive.Grids using Diffinitive.LazyTensors using Diffinitive.RegionIndices import Diffinitive.SbpOperators.BoundaryOperator @testset "normal_derivative" begin g_1D = equidistant_grid(0.0, 1.0, 11) g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12) @testset "normal_derivative" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin d_l = normal_derivative(g_1D, stencil_set, LowerBoundary()) @test d_l == normal_derivative(g_1D, stencil_set, LowerBoundary()) @test d_l isa BoundaryOperator{T,LowerBoundary} where T @test d_l isa LazyTensor{T,0,1} where T end @testset "2D" begin d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,LowerBoundary}()) d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,UpperBoundary}()) Ix = IdentityTensor{Float64}((size(g_2D)[1],)) Iy = IdentityTensor{Float64}((size(g_2D)[2],)) d_l = normal_derivative(g_2D.grids[1], stencil_set, LowerBoundary()) d_r = normal_derivative(g_2D.grids[2], stencil_set, UpperBoundary()) @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,LowerBoundary}()) @test d_w == d_l⊗Iy @test d_n == Ix⊗d_r @test d_w isa LazyTensor{T,1,2} where T @test d_n isa LazyTensor{T,1,2} where T end end @testset "Accuracy" begin v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) v∂x = eval_on(g_2D, (x,y)-> 2*x + y) v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x) # TODO: Test for higher order polynomials? @testset "2nd order" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 end @testset "4th order" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 end end end