Mercurial > repos > public > sbplib_julia
view test/SbpOperators/boundaryops/normal_derivative_test.jl @ 1751:f3d7e2d7a43f feature/sbp_operators/laplace_curvilinear
Merge feature/grids/manifolds
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 11 Sep 2024 16:26:19 +0200 |
parents | de2c4b2663b4 471a948cd2b2 |
children |
line wrap: on
line source
using Test using Diffinitive.SbpOperators using Diffinitive.Grids using Diffinitive.LazyTensors using Diffinitive.RegionIndices import Diffinitive.SbpOperators.BoundaryOperator using StaticArrays using LinearAlgebra @testset "normal_derivative" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "EquidistantGrid" begin g_1D = equidistant_grid(0.0, 1.0, 11) d_l = normal_derivative(g_1D, stencil_set, LowerBoundary()) @test d_l == normal_derivative(g_1D, stencil_set, LowerBoundary()) @test d_l isa BoundaryOperator{T,LowerBoundary} where T @test d_l isa LazyTensor{T,0,1} where T end @testset "TensorGrid" begin g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12) d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,LowerBoundary}()) d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,UpperBoundary}()) Ix = IdentityTensor{Float64}((size(g_2D)[1],)) Iy = IdentityTensor{Float64}((size(g_2D)[2],)) d_l = normal_derivative(g_2D.grids[1], stencil_set, LowerBoundary()) d_r = normal_derivative(g_2D.grids[2], stencil_set, UpperBoundary()) @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,LowerBoundary}()) @test d_w == d_l⊗Iy @test d_n == Ix⊗d_r @test d_w isa LazyTensor{T,1,2} where T @test d_n isa LazyTensor{T,1,2} where T @testset "Accuracy" begin v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) v∂x = eval_on(g_2D, (x,y)-> 2*x + y) v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x) # TODO: Test for higher order polynomials? @testset "2nd order" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 end @testset "4th order" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 end end end @testset "MappedGrid" begin c = Chart(unitsquare()) do (ξ,η) @SVector[2ξ + η*(1-η), 3η+(1+η/2)*ξ^2] end Grids.jacobian(c::typeof(c), (ξ,η)) = @SMatrix[2 1-2η; (2+η)*ξ 3+ξ^2/2] mg = equidistant_grid(c, 10,13) # x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))] # J((ξ, η)) = @SMatrix[ # 1 0; # η*(2ξ-1) 1+ξ*(ξ-1); # ] # mg = mapped_grid(x̄, J, 20, 21) # x̄((ξ, η)) = @SVector[ξ,η] # J((ξ, η)) = @SMatrix[ # 1 0; # 0 1; # ] # mg = mapped_grid(identity, J, 10, 11) for bid ∈ boundary_identifiers(mg) @testset let bid=bid @test normal_derivative(mg, stencil_set, bid) isa LazyTensor{<:Any, 1, 2} end end @testset "Consistency" begin v = map(identity, mg) @testset "4nd order" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) for bid ∈ boundary_identifiers(mg) @testset let bid=bid d = normal_derivative(mg, stencil_set, bid) @test d*v ≈ normal(mg, bid) rtol=1e-13 end end end end @testset "Accuracy" begin v = function(x̄) sin(norm(x̄+@SVector[1,1])) end ∇v = function(x̄) ȳ = x̄+@SVector[1,1] cos(norm(ȳ))*(ȳ/norm(ȳ)) end mg = equidistant_grid(c, 80,80) v̄ = map(v, mg) @testset for (order, atol) ∈ [(2,4e-2),(4,2e-3)] stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=order) @testset for bId ∈ boundary_identifiers(mg) ∂ₙv = map(boundary_grid(mg,bId),normal(mg,bId)) do x̄,n̂ n̂⋅∇v(x̄) end dₙ = normal_derivative(mg, stencil_set, bId) @test dₙ*v̄ ≈ ∂ₙv atol=atol end end end end end