Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 950:97e9a8337a86 feature/laplace_opset
Review: broadcast instead of map in some places
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 14 Mar 2022 08:06:50 +0100 |
parents | 7168d28b03e3 |
children | 775d5513da8f |
comparison
equal
deleted
inserted
replaced
949:7168d28b03e3 | 950:97e9a8337a86 |
---|---|
40 @testset "2nd order" begin | 40 @testset "2nd order" begin |
41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) | 41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) |
42 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | 42 d_closure = parse_stencil(stencil_set["d1"]["closure"]) |
43 d_w, d_e, d_s, d_n = | 43 d_w, d_e, d_s, d_n = |
44 map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D)) | 44 map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D)) |
45 # REVIEW: Would prefere to write this as | |
46 # d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D)) | |
47 # to avoid the line break | |
45 | 48 |
46 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 | 49 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 |
47 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 | 50 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 |
48 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 | 51 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 |
49 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 | 52 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 |
52 @testset "4th order" begin | 55 @testset "4th order" begin |
53 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 56 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
54 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | 57 d_closure = parse_stencil(stencil_set["d1"]["closure"]) |
55 d_w, d_e, d_s, d_n = | 58 d_w, d_e, d_s, d_n = |
56 map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D)) | 59 map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D)) |
57 | 60 # REVIEW: Same as above |
58 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 | 61 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 |
59 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 | 62 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 |
60 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 | 63 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 |
61 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 | 64 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 |
62 end | 65 end |