Mercurial > repos > public > sbplib_julia
view test/SbpOperators/boundaryops/normal_derivative_test.jl @ 728:45966c77cb20 feature/selectable_tests
Split tests for SbpOperators over several files
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 17 Mar 2021 20:34:40 +0100 |
parents | |
children | 6114274447f5 |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids @testset "normal_derivative" begin g_1D = EquidistantGrid(11, 0.0, 1.0) g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) @testset "normal_derivative" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin d_l = normal_derivative(g_1D, op.dClosure, Lower()) @test d_l == normal_derivative(g_1D, op.dClosure, CartesianBoundary{1,Lower}()) @test d_l isa BoundaryOperator{T,Lower} where T @test d_l isa TensorMapping{T,0,1} where T end @testset "2D" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) Ix = IdentityMapping{Float64}((size(g_2D)[1],)) Iy = IdentityMapping{Float64}((size(g_2D)[2],)) d_l = normal_derivative(restrict(g_2D,1),op.dClosure,Lower()) d_r = normal_derivative(restrict(g_2D,2),op.dClosure,Upper()) @test d_w == d_l⊗Iy @test d_n == Ix⊗d_r @test d_w isa TensorMapping{T,1,2} where T @test d_n isa TensorMapping{T,1,2} where T end end @testset "Accuracy" begin v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) v∂x = evalOn(g_2D, (x,y)-> 2*x + y) v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) # TODO: Test for higher order polynomials? @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) @test d_w*v ≈ v∂x[1,:] atol = 1e-13 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) @test d_w*v ≈ v∂x[1,:] atol = 1e-13 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 end end end