comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 728:45966c77cb20 feature/selectable_tests

Split tests for SbpOperators over several files
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 17 Mar 2021 20:34:40 +0100
parents
children 6114274447f5
comparison
equal deleted inserted replaced
727:95b207729b7a 728:45966c77cb20
1 using Test
2
3 using Sbplib.SbpOperators
4 using Sbplib.Grids
5
6 @testset "normal_derivative" begin
7 g_1D = EquidistantGrid(11, 0.0, 1.0)
8 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0))
9 @testset "normal_derivative" begin
10 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
11 @testset "1D" begin
12 d_l = normal_derivative(g_1D, op.dClosure, Lower())
13 @test d_l == normal_derivative(g_1D, op.dClosure, CartesianBoundary{1,Lower}())
14 @test d_l isa BoundaryOperator{T,Lower} where T
15 @test d_l isa TensorMapping{T,0,1} where T
16 end
17 @testset "2D" begin
18 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
19 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}())
20 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}())
21 Ix = IdentityMapping{Float64}((size(g_2D)[1],))
22 Iy = IdentityMapping{Float64}((size(g_2D)[2],))
23 d_l = normal_derivative(restrict(g_2D,1),op.dClosure,Lower())
24 d_r = normal_derivative(restrict(g_2D,2),op.dClosure,Upper())
25 @test d_w == d_l⊗Iy
26 @test d_n == Ix⊗d_r
27 @test d_w isa TensorMapping{T,1,2} where T
28 @test d_n isa TensorMapping{T,1,2} where T
29 end
30 end
31 @testset "Accuracy" begin
32 v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y)
33 v∂x = evalOn(g_2D, (x,y)-> 2*x + y)
34 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x)
35 # TODO: Test for higher order polynomials?
36 @testset "2nd order" begin
37 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
38 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}())
39 d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}())
40 d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}())
41 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}())
42
43 @test d_w*v ≈ v∂x[1,:] atol = 1e-13
44 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13
45 @test d_s*v ≈ v∂y[:,1] atol = 1e-13
46 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13
47 end
48
49 @testset "4th order" begin
50 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
51 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}())
52 d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}())
53 d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}())
54 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}())
55
56 @test d_w*v ≈ v∂x[1,:] atol = 1e-13
57 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13
58 @test d_s*v ≈ v∂y[:,1] atol = 1e-13
59 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13
60 end
61 end
62 end