Mercurial > repos > public > sbplib_julia
diff test/SbpOperators/boundaryops/normal_derivative_test.jl @ 728:45966c77cb20 feature/selectable_tests
Split tests for SbpOperators over several files
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 17 Mar 2021 20:34:40 +0100 |
parents | |
children | 6114274447f5 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test/SbpOperators/boundaryops/normal_derivative_test.jl Wed Mar 17 20:34:40 2021 +0100 @@ -0,0 +1,62 @@ +using Test + +using Sbplib.SbpOperators +using Sbplib.Grids + +@testset "normal_derivative" begin + g_1D = EquidistantGrid(11, 0.0, 1.0) + g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) + @testset "normal_derivative" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + @testset "1D" begin + d_l = normal_derivative(g_1D, op.dClosure, Lower()) + @test d_l == normal_derivative(g_1D, op.dClosure, CartesianBoundary{1,Lower}()) + @test d_l isa BoundaryOperator{T,Lower} where T + @test d_l isa TensorMapping{T,0,1} where T + end + @testset "2D" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) + d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) + Ix = IdentityMapping{Float64}((size(g_2D)[1],)) + Iy = IdentityMapping{Float64}((size(g_2D)[2],)) + d_l = normal_derivative(restrict(g_2D,1),op.dClosure,Lower()) + d_r = normal_derivative(restrict(g_2D,2),op.dClosure,Upper()) + @test d_w == d_l⊗Iy + @test d_n == Ix⊗d_r + @test d_w isa TensorMapping{T,1,2} where T + @test d_n isa TensorMapping{T,1,2} where T + end + end + @testset "Accuracy" begin + v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) + v∂x = evalOn(g_2D, (x,y)-> 2*x + y) + v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) + # TODO: Test for higher order polynomials? + @testset "2nd order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) + d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) + d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) + d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) + d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) + + @test d_w*v ≈ v∂x[1,:] atol = 1e-13 + @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 + @test d_s*v ≈ v∂y[:,1] atol = 1e-13 + @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 + end + + @testset "4th order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) + d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) + d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) + d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) + + @test d_w*v ≈ v∂x[1,:] atol = 1e-13 + @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 + @test d_s*v ≈ v∂y[:,1] atol = 1e-13 + @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 + end + end +end