Mercurial > repos > public > sbplib_julia
diff test/testSbpOperators.jl @ 634:fb5ac62563aa feature/volume_and_boundary_operators
Integrate feature/quadrature_as_outer_product into branch, before closing feature/quadrature_as_outer_product. (It is now obsolete apart from tests)
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 01 Jan 2021 16:39:57 +0100 |
parents | bf8b66c596f7 a78bda7084f6 |
children | 08b2c7a2d063 |
line wrap: on
line diff
--- a/test/testSbpOperators.jl Thu Dec 31 08:41:07 2020 +0100 +++ b/test/testSbpOperators.jl Fri Jan 01 16:39:57 2021 +0100 @@ -405,67 +405,152 @@ end end -@testset "DiagonalInnerProduct" begin +@testset "DiagonalQuadrature" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - L = 2.3 - g = EquidistantGrid(77, 0.0, L) - H = DiagonalInnerProduct(g,op.quadratureClosure) - v = ones(Float64, size(g)) + Lx = π/2. + Ly = Float64(π) + g_1D = EquidistantGrid(77, 0.0, Lx) + g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) + integral(H,v) = sum(H*v) + @testset "Constructors" begin + # 1D + H_x = DiagonalQuadrature(spacing(g_1D)[1],op.quadratureClosure,size(g_1D)); + @test H_x == DiagonalQuadrature(g_1D,op.quadratureClosure) + @test H_x == diagonal_quadrature(g_1D,op.quadratureClosure) + @test H_x isa TensorMapping{T,1,1} where T + @test H_x' isa TensorMapping{T,1,1} where T + # 2D + H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) + @test H_xy isa TensorMappingComposition + @test H_xy isa TensorMapping{T,2,2} where T + @test H_xy' isa TensorMapping{T,2,2} where T + end + + @testset "Sizes" begin + # 1D + H_x = diagonal_quadrature(g_1D,op.quadratureClosure) + @test domain_size(H_x) == size(g_1D) + @test range_size(H_x) == size(g_1D) + # 2D + H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) + @test domain_size(H_xy) == size(g_2D) + @test range_size(H_xy) == size(g_2D) + end - @test H isa TensorMapping{T,1,1} where T - @test H' isa TensorMapping{T,1,1} where T - @test sum(H*v) ≈ L - @test H*v == H'*v + @testset "Application" begin + # 1D + H_x = diagonal_quadrature(g_1D,op.quadratureClosure) + a = 3.2 + v_1D = a*ones(Float64, size(g_1D)) + u_1D = evalOn(g_1D,x->sin(x)) + @test integral(H_x,v_1D) ≈ a*Lx rtol = 1e-13 + @test integral(H_x,u_1D) ≈ 1. rtol = 1e-8 + @test H_x*v_1D == H_x'*v_1D + # 2D + H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) + b = 2.1 + v_2D = b*ones(Float64, size(g_2D)) + u_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y)) + @test integral(H_xy,v_2D) ≈ b*Lx*Ly rtol = 1e-13 + @test integral(H_xy,u_2D) ≈ π rtol = 1e-8 + @test H_xy*v_2D ≈ H_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason? + end + + @testset "Accuracy" begin + v = () + for i = 0:4 + f_i(x) = 1/factorial(i)*x^i + v = (v...,evalOn(g_1D,f_i)) + end + # TODO: Bug in readOperator for 2nd order + # # 2nd order + # op2 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) + # H2 = diagonal_quadrature(g_1D,op2.quadratureClosure) + # for i = 1:3 + # @test integral(H2,v[i]) ≈ v[i+1] rtol = 1e-14 + # end + + # 4th order + op4 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + H4 = diagonal_quadrature(g_1D,op4.quadratureClosure) + for i = 1:4 + @test integral(H4,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 + end + end + + @testset "Inferred" begin + H_x = diagonal_quadrature(g_1D,op.quadratureClosure) + H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) + v_1D = ones(Float64, size(g_1D)) + v_2D = ones(Float64, size(g_2D)) + @inferred H_x*v_1D + @inferred H_x'*v_1D + @inferred H_xy*v_2D + @inferred H_xy'*v_2D + end end -@testset "Quadrature" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - Lx = 2.3 - Ly = 5.2 - g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) - - Q = Quadrature(g, op.quadratureClosure) - - @test Q isa TensorMapping{T,2,2} where T - @test Q' isa TensorMapping{T,2,2} where T - - v = ones(Float64, size(g)) - @test sum(Q*v) ≈ Lx*Ly - - v = 2*ones(Float64, size(g)) - @test_broken sum(Q*v) ≈ 2*Lx*Ly - - @test Q*v == Q'*v -end - -@testset "InverseDiagonalInnerProduct" begin +@testset "InverseDiagonalQuadrature" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - L = 2.3 - g = EquidistantGrid(77, 0.0, L) - H = DiagonalInnerProduct(g, op.quadratureClosure) - Hi = InverseDiagonalInnerProduct(g,op.quadratureClosure) - v = evalOn(g, x->sin(x)) + Lx = π/2. + Ly = Float64(π) + g_1D = EquidistantGrid(77, 0.0, Lx) + g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) + @testset "Constructors" begin + # 1D + Hi_x = InverseDiagonalQuadrature(inverse_spacing(g_1D)[1], 1. ./ op.quadratureClosure, size(g_1D)); + @test Hi_x == InverseDiagonalQuadrature(g_1D,op.quadratureClosure) + @test Hi_x == inverse_diagonal_quadrature(g_1D,op.quadratureClosure) + @test Hi_x isa TensorMapping{T,1,1} where T + @test Hi_x' isa TensorMapping{T,1,1} where T - @test Hi isa TensorMapping{T,1,1} where T - @test Hi' isa TensorMapping{T,1,1} where T - @test Hi*H*v ≈ v - @test Hi*v == Hi'*v -end + # 2D + Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) + @test Hi_xy isa TensorMappingComposition + @test Hi_xy isa TensorMapping{T,2,2} where T + @test Hi_xy' isa TensorMapping{T,2,2} where T + end + + @testset "Sizes" begin + # 1D + Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) + @test domain_size(Hi_x) == size(g_1D) + @test range_size(Hi_x) == size(g_1D) + # 2D + Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) + @test domain_size(Hi_xy) == size(g_2D) + @test range_size(Hi_xy) == size(g_2D) + end -@testset "InverseQuadrature" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - Lx = 7.3 - Ly = 8.2 - g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) + @testset "Application" begin + # 1D + H_x = diagonal_quadrature(g_1D,op.quadratureClosure) + Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) + v_1D = evalOn(g_1D,x->sin(x)) + u_1D = evalOn(g_1D,x->x^3-x^2+1) + @test Hi_x*H_x*v_1D ≈ v_1D rtol = 1e-15 + @test Hi_x*H_x*u_1D ≈ u_1D rtol = 1e-15 + @test Hi_x*v_1D == Hi_x'*v_1D + # 2D + H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) + Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) + v_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y)) + u_2D = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) + @test Hi_xy*H_xy*v_2D ≈ v_2D rtol = 1e-15 + @test Hi_xy*H_xy*u_2D ≈ u_2D rtol = 1e-15 + @test Hi_xy*v_2D ≈ Hi_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason? + end - Q = Quadrature(g, op.quadratureClosure) - Qinv = InverseQuadrature(g, op.quadratureClosure) - v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) - - @test Qinv isa TensorMapping{T,2,2} where T - @test Qinv' isa TensorMapping{T,2,2} where T - @test_broken Qinv*(Q*v) ≈ v - @test Qinv*v == Qinv'*v + @testset "Inferred" begin + Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) + Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) + v_1D = ones(Float64, size(g_1D)) + v_2D = ones(Float64, size(g_2D)) + @inferred Hi_x*v_1D + @inferred Hi_x'*v_1D + @inferred Hi_xy*v_2D + @inferred Hi_xy'*v_2D + end end @testset "BoundaryOperator" begin