Mercurial > repos > public > sbplib_julia
comparison test/testSbpOperators.jl @ 634:fb5ac62563aa feature/volume_and_boundary_operators
Integrate feature/quadrature_as_outer_product into branch, before closing feature/quadrature_as_outer_product. (It is now obsolete apart from tests)
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 01 Jan 2021 16:39:57 +0100 |
parents | bf8b66c596f7 a78bda7084f6 |
children | 08b2c7a2d063 |
comparison
equal
deleted
inserted
replaced
632:bf8b66c596f7 | 634:fb5ac62563aa |
---|---|
403 @test L*evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) ≈ evalOn(g_3D,(x,y,z) -> -sin(x)-cos(y) + exp(z)) rtol = 5e-4 norm = l2 | 403 @test L*evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) ≈ evalOn(g_3D,(x,y,z) -> -sin(x)-cos(y) + exp(z)) rtol = 5e-4 norm = l2 |
404 end | 404 end |
405 end | 405 end |
406 end | 406 end |
407 | 407 |
408 @testset "DiagonalInnerProduct" begin | 408 @testset "DiagonalQuadrature" begin |
409 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 409 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
410 L = 2.3 | 410 Lx = π/2. |
411 g = EquidistantGrid(77, 0.0, L) | 411 Ly = Float64(π) |
412 H = DiagonalInnerProduct(g,op.quadratureClosure) | 412 g_1D = EquidistantGrid(77, 0.0, Lx) |
413 v = ones(Float64, size(g)) | 413 g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) |
414 | 414 integral(H,v) = sum(H*v) |
415 @test H isa TensorMapping{T,1,1} where T | 415 @testset "Constructors" begin |
416 @test H' isa TensorMapping{T,1,1} where T | 416 # 1D |
417 @test sum(H*v) ≈ L | 417 H_x = DiagonalQuadrature(spacing(g_1D)[1],op.quadratureClosure,size(g_1D)); |
418 @test H*v == H'*v | 418 @test H_x == DiagonalQuadrature(g_1D,op.quadratureClosure) |
419 end | 419 @test H_x == diagonal_quadrature(g_1D,op.quadratureClosure) |
420 | 420 @test H_x isa TensorMapping{T,1,1} where T |
421 @testset "Quadrature" begin | 421 @test H_x' isa TensorMapping{T,1,1} where T |
422 # 2D | |
423 H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) | |
424 @test H_xy isa TensorMappingComposition | |
425 @test H_xy isa TensorMapping{T,2,2} where T | |
426 @test H_xy' isa TensorMapping{T,2,2} where T | |
427 end | |
428 | |
429 @testset "Sizes" begin | |
430 # 1D | |
431 H_x = diagonal_quadrature(g_1D,op.quadratureClosure) | |
432 @test domain_size(H_x) == size(g_1D) | |
433 @test range_size(H_x) == size(g_1D) | |
434 # 2D | |
435 H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) | |
436 @test domain_size(H_xy) == size(g_2D) | |
437 @test range_size(H_xy) == size(g_2D) | |
438 end | |
439 | |
440 @testset "Application" begin | |
441 # 1D | |
442 H_x = diagonal_quadrature(g_1D,op.quadratureClosure) | |
443 a = 3.2 | |
444 v_1D = a*ones(Float64, size(g_1D)) | |
445 u_1D = evalOn(g_1D,x->sin(x)) | |
446 @test integral(H_x,v_1D) ≈ a*Lx rtol = 1e-13 | |
447 @test integral(H_x,u_1D) ≈ 1. rtol = 1e-8 | |
448 @test H_x*v_1D == H_x'*v_1D | |
449 # 2D | |
450 H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) | |
451 b = 2.1 | |
452 v_2D = b*ones(Float64, size(g_2D)) | |
453 u_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y)) | |
454 @test integral(H_xy,v_2D) ≈ b*Lx*Ly rtol = 1e-13 | |
455 @test integral(H_xy,u_2D) ≈ π rtol = 1e-8 | |
456 @test H_xy*v_2D ≈ H_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason? | |
457 end | |
458 | |
459 @testset "Accuracy" begin | |
460 v = () | |
461 for i = 0:4 | |
462 f_i(x) = 1/factorial(i)*x^i | |
463 v = (v...,evalOn(g_1D,f_i)) | |
464 end | |
465 # TODO: Bug in readOperator for 2nd order | |
466 # # 2nd order | |
467 # op2 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
468 # H2 = diagonal_quadrature(g_1D,op2.quadratureClosure) | |
469 # for i = 1:3 | |
470 # @test integral(H2,v[i]) ≈ v[i+1] rtol = 1e-14 | |
471 # end | |
472 | |
473 # 4th order | |
474 op4 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
475 H4 = diagonal_quadrature(g_1D,op4.quadratureClosure) | |
476 for i = 1:4 | |
477 @test integral(H4,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 | |
478 end | |
479 end | |
480 | |
481 @testset "Inferred" begin | |
482 H_x = diagonal_quadrature(g_1D,op.quadratureClosure) | |
483 H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) | |
484 v_1D = ones(Float64, size(g_1D)) | |
485 v_2D = ones(Float64, size(g_2D)) | |
486 @inferred H_x*v_1D | |
487 @inferred H_x'*v_1D | |
488 @inferred H_xy*v_2D | |
489 @inferred H_xy'*v_2D | |
490 end | |
491 end | |
492 | |
493 @testset "InverseDiagonalQuadrature" begin | |
422 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 494 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
423 Lx = 2.3 | 495 Lx = π/2. |
424 Ly = 5.2 | 496 Ly = Float64(π) |
425 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | 497 g_1D = EquidistantGrid(77, 0.0, Lx) |
426 | 498 g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) |
427 Q = Quadrature(g, op.quadratureClosure) | 499 @testset "Constructors" begin |
428 | 500 # 1D |
429 @test Q isa TensorMapping{T,2,2} where T | 501 Hi_x = InverseDiagonalQuadrature(inverse_spacing(g_1D)[1], 1. ./ op.quadratureClosure, size(g_1D)); |
430 @test Q' isa TensorMapping{T,2,2} where T | 502 @test Hi_x == InverseDiagonalQuadrature(g_1D,op.quadratureClosure) |
431 | 503 @test Hi_x == inverse_diagonal_quadrature(g_1D,op.quadratureClosure) |
432 v = ones(Float64, size(g)) | 504 @test Hi_x isa TensorMapping{T,1,1} where T |
433 @test sum(Q*v) ≈ Lx*Ly | 505 @test Hi_x' isa TensorMapping{T,1,1} where T |
434 | 506 |
435 v = 2*ones(Float64, size(g)) | 507 # 2D |
436 @test_broken sum(Q*v) ≈ 2*Lx*Ly | 508 Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) |
437 | 509 @test Hi_xy isa TensorMappingComposition |
438 @test Q*v == Q'*v | 510 @test Hi_xy isa TensorMapping{T,2,2} where T |
439 end | 511 @test Hi_xy' isa TensorMapping{T,2,2} where T |
440 | 512 end |
441 @testset "InverseDiagonalInnerProduct" begin | 513 |
442 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 514 @testset "Sizes" begin |
443 L = 2.3 | 515 # 1D |
444 g = EquidistantGrid(77, 0.0, L) | 516 Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) |
445 H = DiagonalInnerProduct(g, op.quadratureClosure) | 517 @test domain_size(Hi_x) == size(g_1D) |
446 Hi = InverseDiagonalInnerProduct(g,op.quadratureClosure) | 518 @test range_size(Hi_x) == size(g_1D) |
447 v = evalOn(g, x->sin(x)) | 519 # 2D |
448 | 520 Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) |
449 @test Hi isa TensorMapping{T,1,1} where T | 521 @test domain_size(Hi_xy) == size(g_2D) |
450 @test Hi' isa TensorMapping{T,1,1} where T | 522 @test range_size(Hi_xy) == size(g_2D) |
451 @test Hi*H*v ≈ v | 523 end |
452 @test Hi*v == Hi'*v | 524 |
453 end | 525 @testset "Application" begin |
454 | 526 # 1D |
455 @testset "InverseQuadrature" begin | 527 H_x = diagonal_quadrature(g_1D,op.quadratureClosure) |
456 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 528 Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) |
457 Lx = 7.3 | 529 v_1D = evalOn(g_1D,x->sin(x)) |
458 Ly = 8.2 | 530 u_1D = evalOn(g_1D,x->x^3-x^2+1) |
459 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | 531 @test Hi_x*H_x*v_1D ≈ v_1D rtol = 1e-15 |
460 | 532 @test Hi_x*H_x*u_1D ≈ u_1D rtol = 1e-15 |
461 Q = Quadrature(g, op.quadratureClosure) | 533 @test Hi_x*v_1D == Hi_x'*v_1D |
462 Qinv = InverseQuadrature(g, op.quadratureClosure) | 534 # 2D |
463 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | 535 H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) |
464 | 536 Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) |
465 @test Qinv isa TensorMapping{T,2,2} where T | 537 v_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y)) |
466 @test Qinv' isa TensorMapping{T,2,2} where T | 538 u_2D = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) |
467 @test_broken Qinv*(Q*v) ≈ v | 539 @test Hi_xy*H_xy*v_2D ≈ v_2D rtol = 1e-15 |
468 @test Qinv*v == Qinv'*v | 540 @test Hi_xy*H_xy*u_2D ≈ u_2D rtol = 1e-15 |
541 @test Hi_xy*v_2D ≈ Hi_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason? | |
542 end | |
543 | |
544 @testset "Inferred" begin | |
545 Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) | |
546 Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) | |
547 v_1D = ones(Float64, size(g_1D)) | |
548 v_2D = ones(Float64, size(g_2D)) | |
549 @inferred Hi_x*v_1D | |
550 @inferred Hi_x'*v_1D | |
551 @inferred Hi_xy*v_2D | |
552 @inferred Hi_xy'*v_2D | |
553 end | |
469 end | 554 end |
470 | 555 |
471 @testset "BoundaryOperator" begin | 556 @testset "BoundaryOperator" begin |
472 closure_stencil = Stencil((0,2), (2.,1.,3.)) | 557 closure_stencil = Stencil((0,2), (2.,1.,3.)) |
473 g_1D = EquidistantGrid(11, 0.0, 1.0) | 558 g_1D = EquidistantGrid(11, 0.0, 1.0) |