Mercurial > repos > public > sbplib_julia
view test/testSbpOperators.jl @ 633:a78bda7084f6 feature/quadrature_as_outer_product
Merge w. default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 01 Jan 2021 16:34:55 +0100 |
parents | 08e27dee76c3 eaa8c852ddf2 |
children | fb5ac62563aa |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.RegionIndices using Sbplib.LazyTensors using LinearAlgebra using TOML import Sbplib.SbpOperators.Stencil @testset "SbpOperators" begin @testset "Stencil" begin s = Stencil((-2,2), (1.,2.,2.,3.,4.)) @test s isa Stencil{Float64, 5} @test eltype(s) == Float64 @test SbpOperators.scale(s, 2) == Stencil((-2,2), (2.,4.,4.,6.,8.)) @test Stencil((1,2,3,4), center=1) == Stencil((0, 3),(1,2,3,4)) @test Stencil((1,2,3,4), center=2) == Stencil((-1, 2),(1,2,3,4)) @test Stencil((1,2,3,4), center=4) == Stencil((-3, 0),(1,2,3,4)) end @testset "parse_rational" begin @test SbpOperators.parse_rational("1") isa Rational @test SbpOperators.parse_rational("1") == 1//1 @test SbpOperators.parse_rational("1/2") isa Rational @test SbpOperators.parse_rational("1/2") == 1//2 @test SbpOperators.parse_rational("37/13") isa Rational @test SbpOperators.parse_rational("37/13") == 37//13 end @testset "readoperator" begin toml_str = """ [meta] type = "equidistant" [order2] H.inner = ["1"] D1.inner_stencil = ["-1/2", "0", "1/2"] D1.closure_stencils = [ ["-1", "1"], ] d1.closure = ["-3/2", "2", "-1/2"] [order4] H.closure = ["17/48", "59/48", "43/48", "49/48"] D2.inner_stencil = ["-1/12","4/3","-5/2","4/3","-1/12"] D2.closure_stencils = [ [ "2", "-5", "4", "-1", "0", "0"], [ "1", "-2", "1", "0", "0", "0"], [ "-4/43", "59/43", "-110/43", "59/43", "-4/43", "0"], [ "-1/49", "0", "59/49", "-118/49", "64/49", "-4/49"], ] """ parsed_toml = TOML.parse(toml_str) @testset "get_stencil" begin @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil") == Stencil((-1/2, 0., 1/2), center=2) @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil", center=1) == Stencil((-1/2, 0., 1/2); center=1) @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil", center=3) == Stencil((-1/2, 0., 1/2); center=3) @test get_stencil(parsed_toml, "order2", "H", "inner") == Stencil((1.,), center=1) @test_throws AssertionError get_stencil(parsed_toml, "meta", "type") @test_throws AssertionError get_stencil(parsed_toml, "order2", "D1", "closure_stencils") end @testset "get_stencils" begin @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=(1,)) == (Stencil((-1., 1.), center=1),) @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=(2,)) == (Stencil((-1., 1.), center=2),) @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=[2]) == (Stencil((-1., 1.), center=2),) @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=[1,1,1,1]) == ( Stencil(( 2., -5., 4., -1., 0., 0.), center=1), Stencil(( 1., -2., 1., 0., 0., 0.), center=1), Stencil(( -4/43, 59/43, -110/43, 59/43, -4/43, 0.), center=1), Stencil(( -1/49, 0., 59/49, -118/49, 64/49, -4/49), center=1), ) @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(4,2,3,1)) == ( Stencil(( 2., -5., 4., -1., 0., 0.), center=4), Stencil(( 1., -2., 1., 0., 0., 0.), center=2), Stencil(( -4/43, 59/43, -110/43, 59/43, -4/43, 0.), center=3), Stencil(( -1/49, 0., 59/49, -118/49, 64/49, -4/49), center=1), ) @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=1:4) == ( Stencil(( 2., -5., 4., -1., 0., 0.), center=1), Stencil(( 1., -2., 1., 0., 0., 0.), center=2), Stencil(( -4/43, 59/43, -110/43, 59/43, -4/43, 0.), center=3), Stencil(( -1/49, 0., 59/49, -118/49, 64/49, -4/49), center=4), ) @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(1,2,3)) @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(1,2,3,5,4)) @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "inner_stencil",centers=(1,2)) end @testset "get_tuple" begin @test get_tuple(parsed_toml, "order2", "d1", "closure") == (-3/2, 2, -1/2) @test_throws AssertionError get_tuple(parsed_toml, "meta", "type") end end # @testset "apply_quadrature" begin # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) # h = 0.5 # # @test apply_quadrature(op, h, 1.0, 10, 100) == h # # N = 10 # qc = op.quadratureClosure # q = h.*(qc..., ones(N-2*closuresize(op))..., reverse(qc)...) # @assert length(q) == N # # for i ∈ 1:N # @test apply_quadrature(op, h, 1.0, i, N) == q[i] # end # # v = [2.,3.,2.,4.,5.,4.,3.,4.,5.,4.5] # for i ∈ 1:N # @test apply_quadrature(op, h, v[i], i, N) == q[i]*v[i] # end # end @testset "SecondDerivative" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) L = 3.5 g = EquidistantGrid(101, 0.0, L) Dₓₓ = SecondDerivative(g,op.innerStencil,op.closureStencils) f0(x) = 1. f1(x) = x f2(x) = 1/2*x^2 f3(x) = 1/6*x^3 f4(x) = 1/24*x^4 f5(x) = sin(x) f5ₓₓ(x) = -f5(x) v0 = evalOn(g,f0) v1 = evalOn(g,f1) v2 = evalOn(g,f2) v3 = evalOn(g,f3) v4 = evalOn(g,f4) v5 = evalOn(g,f5) @test Dₓₓ isa TensorMapping{T,1,1} where T @test Dₓₓ' isa TensorMapping{T,1,1} where T # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for v - monomial up to order 3. # Exact differentiation is measured point-wise. For other grid functions # the error is measured in the l2-norm. @test norm(Dₓₓ*v0) ≈ 0.0 atol=5e-10 @test norm(Dₓₓ*v1) ≈ 0.0 atol=5e-10 @test Dₓₓ*v2 ≈ v0 atol=5e-11 @test Dₓₓ*v3 ≈ v1 atol=5e-11 h = spacing(g)[1]; l2(v) = sqrt(h*sum(v.^2)) @test Dₓₓ*v4 ≈ v2 atol=5e-4 norm=l2 @test Dₓₓ*v5 ≈ -v5 atol=5e-4 norm=l2 end @testset "Laplace2D" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Lx = 1.5 Ly = 3.2 g = EquidistantGrid((102,131), (0.0, 0.0), (Lx,Ly)) L = Laplace(g, op.innerStencil, op.closureStencils) f0(x,y) = 2. f1(x,y) = x+y f2(x,y) = 1/2*x^2 + 1/2*y^2 f3(x,y) = 1/6*x^3 + 1/6*y^3 f4(x,y) = 1/24*x^4 + 1/24*y^4 f5(x,y) = sin(x) + cos(y) f5ₓₓ(x,y) = -f5(x,y) v0 = evalOn(g,f0) v1 = evalOn(g,f1) v2 = evalOn(g,f2) v3 = evalOn(g,f3) v4 = evalOn(g,f4) v5 = evalOn(g,f5) v5ₓₓ = evalOn(g,f5ₓₓ) @test L isa TensorMapping{T,2,2} where T @test L' isa TensorMapping{T,2,2} where T # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for v - monomial up to order 3. # Exact differentiation is measured point-wise. For other grid functions # the error is measured in the H-norm. @test norm(L*v0) ≈ 0 atol=5e-10 @test norm(L*v1) ≈ 0 atol=5e-10 @test L*v2 ≈ v0 # Seems to be more accurate @test L*v3 ≈ v1 atol=5e-10 h = spacing(g) l2(v) = sqrt(prod(h)*sum(v.^2)) @test L*v4 ≈ v2 atol=5e-4 norm=l2 @test L*v5 ≈ v5ₓₓ atol=5e-4 norm=l2 end @testset "DiagonalQuadrature" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Lx = π/2. Ly = Float64(π) g_1D = EquidistantGrid(77, 0.0, Lx) g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) integral(H,v) = sum(H*v) @testset "Constructors" begin # 1D H_x = DiagonalQuadrature(spacing(g_1D)[1],op.quadratureClosure,size(g_1D)); @test H_x == DiagonalQuadrature(g_1D,op.quadratureClosure) @test H_x == diagonal_quadrature(g_1D,op.quadratureClosure) @test H_x isa TensorMapping{T,1,1} where T @test H_x' isa TensorMapping{T,1,1} where T # 2D H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) @test H_xy isa TensorMappingComposition @test H_xy isa TensorMapping{T,2,2} where T @test H_xy' isa TensorMapping{T,2,2} where T end @testset "Sizes" begin # 1D H_x = diagonal_quadrature(g_1D,op.quadratureClosure) @test domain_size(H_x) == size(g_1D) @test range_size(H_x) == size(g_1D) # 2D H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) @test domain_size(H_xy) == size(g_2D) @test range_size(H_xy) == size(g_2D) end @testset "Application" begin # 1D H_x = diagonal_quadrature(g_1D,op.quadratureClosure) a = 3.2 v_1D = a*ones(Float64, size(g_1D)) u_1D = evalOn(g_1D,x->sin(x)) @test integral(H_x,v_1D) ≈ a*Lx rtol = 1e-13 @test integral(H_x,u_1D) ≈ 1. rtol = 1e-8 @test H_x*v_1D == H_x'*v_1D # 2D H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) b = 2.1 v_2D = b*ones(Float64, size(g_2D)) u_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y)) @test integral(H_xy,v_2D) ≈ b*Lx*Ly rtol = 1e-13 @test integral(H_xy,u_2D) ≈ π rtol = 1e-8 @test H_xy*v_2D ≈ H_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason? end @testset "Accuracy" begin v = () for i = 0:4 f_i(x) = 1/factorial(i)*x^i v = (v...,evalOn(g_1D,f_i)) end # TODO: Bug in readOperator for 2nd order # # 2nd order # op2 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) # H2 = diagonal_quadrature(g_1D,op2.quadratureClosure) # for i = 1:3 # @test integral(H2,v[i]) ≈ v[i+1] rtol = 1e-14 # end # 4th order op4 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) H4 = diagonal_quadrature(g_1D,op4.quadratureClosure) for i = 1:4 @test integral(H4,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 end end @testset "Inferred" begin H_x = diagonal_quadrature(g_1D,op.quadratureClosure) H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) v_1D = ones(Float64, size(g_1D)) v_2D = ones(Float64, size(g_2D)) @inferred H_x*v_1D @inferred H_x'*v_1D @inferred H_xy*v_2D @inferred H_xy'*v_2D end end @testset "InverseDiagonalQuadrature" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Lx = π/2. Ly = Float64(π) g_1D = EquidistantGrid(77, 0.0, Lx) g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) @testset "Constructors" begin # 1D Hi_x = InverseDiagonalQuadrature(inverse_spacing(g_1D)[1], 1. ./ op.quadratureClosure, size(g_1D)); @test Hi_x == InverseDiagonalQuadrature(g_1D,op.quadratureClosure) @test Hi_x == inverse_diagonal_quadrature(g_1D,op.quadratureClosure) @test Hi_x isa TensorMapping{T,1,1} where T @test Hi_x' isa TensorMapping{T,1,1} where T # 2D Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) @test Hi_xy isa TensorMappingComposition @test Hi_xy isa TensorMapping{T,2,2} where T @test Hi_xy' isa TensorMapping{T,2,2} where T end @testset "Sizes" begin # 1D Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) @test domain_size(Hi_x) == size(g_1D) @test range_size(Hi_x) == size(g_1D) # 2D Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) @test domain_size(Hi_xy) == size(g_2D) @test range_size(Hi_xy) == size(g_2D) end @testset "Application" begin # 1D H_x = diagonal_quadrature(g_1D,op.quadratureClosure) Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) v_1D = evalOn(g_1D,x->sin(x)) u_1D = evalOn(g_1D,x->x^3-x^2+1) @test Hi_x*H_x*v_1D ≈ v_1D rtol = 1e-15 @test Hi_x*H_x*u_1D ≈ u_1D rtol = 1e-15 @test Hi_x*v_1D == Hi_x'*v_1D # 2D H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) v_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y)) u_2D = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) @test Hi_xy*H_xy*v_2D ≈ v_2D rtol = 1e-15 @test Hi_xy*H_xy*u_2D ≈ u_2D rtol = 1e-15 @test Hi_xy*v_2D ≈ Hi_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason? end @testset "Inferred" begin Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) v_1D = ones(Float64, size(g_1D)) v_2D = ones(Float64, size(g_2D)) @inferred Hi_x*v_1D @inferred Hi_x'*v_1D @inferred Hi_xy*v_2D @inferred Hi_xy'*v_2D end end @testset "BoundaryRestrictrion" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) g_1D = EquidistantGrid(11, 0.0, 1.0) g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) @testset "Constructors" begin @testset "1D" begin e_l = BoundaryRestriction{Lower}(op.eClosure,size(g_1D)[1]) @test e_l == BoundaryRestriction(g_1D,op.eClosure,Lower()) @test e_l == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Lower}()) @test e_l isa TensorMapping{T,0,1} where T e_r = BoundaryRestriction{Upper}(op.eClosure,size(g_1D)[1]) @test e_r == BoundaryRestriction(g_1D,op.eClosure,Upper()) @test e_r == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Upper}()) @test e_r isa TensorMapping{T,0,1} where T end @testset "2D" begin e_w = boundary_restriction(g_2D,op.eClosure,CartesianBoundary{1,Upper}()) @test e_w isa InflatedTensorMapping @test e_w isa TensorMapping{T,1,2} where T end end e_l = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Lower}()) e_r = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Upper}()) e_w = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Lower}()) e_e = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Upper}()) e_s = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Lower}()) e_n = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Upper}()) @testset "Sizes" begin @testset "1D" begin @test domain_size(e_l) == (11,) @test domain_size(e_r) == (11,) @test range_size(e_l) == () @test range_size(e_r) == () end @testset "2D" begin @test domain_size(e_w) == (11,15) @test domain_size(e_e) == (11,15) @test domain_size(e_s) == (11,15) @test domain_size(e_n) == (11,15) @test range_size(e_w) == (15,) @test range_size(e_e) == (15,) @test range_size(e_s) == (11,) @test range_size(e_n) == (11,) end end @testset "Application" begin @testset "1D" begin v = evalOn(g_1D,x->1+x^2) u = fill(3.124) @test (e_l*v)[] == v[1] @test (e_r*v)[] == v[end] @test (e_r*v)[1] == v[end] @test e_l'*u == [u[]; zeros(10)] @test e_r'*u == [zeros(10); u[]] end @testset "2D" begin v = rand(11, 15) u = fill(3.124) @test e_w*v == v[1,:] @test e_e*v == v[end,:] @test e_s*v == v[:,1] @test e_n*v == v[:,end] g_x = rand(11) g_y = rand(15) G_w = zeros(Float64, (11,15)) G_w[1,:] = g_y G_e = zeros(Float64, (11,15)) G_e[end,:] = g_y G_s = zeros(Float64, (11,15)) G_s[:,1] = g_x G_n = zeros(Float64, (11,15)) G_n[:,end] = g_x @test e_w'*g_y == G_w @test e_e'*g_y == G_e @test e_s'*g_x == G_s @test e_n'*g_x == G_n end @testset "Regions" begin u = fill(3.124) @test (e_l'*u)[Index(1,Lower)] == 3.124 @test (e_l'*u)[Index(2,Lower)] == 0 @test (e_l'*u)[Index(6,Interior)] == 0 @test (e_l'*u)[Index(10,Upper)] == 0 @test (e_l'*u)[Index(11,Upper)] == 0 @test (e_r'*u)[Index(1,Lower)] == 0 @test (e_r'*u)[Index(2,Lower)] == 0 @test (e_r'*u)[Index(6,Interior)] == 0 @test (e_r'*u)[Index(10,Upper)] == 0 @test (e_r'*u)[Index(11,Upper)] == 3.124 end end @testset "Inferred" begin v = ones(Float64, 11) u = fill(1.) @inferred apply(e_l, v) @inferred apply(e_r, v) @inferred apply_transpose(e_l, u, 4) @inferred apply_transpose(e_l, u, Index(1,Lower)) @inferred apply_transpose(e_l, u, Index(2,Lower)) @inferred apply_transpose(e_l, u, Index(6,Interior)) @inferred apply_transpose(e_l, u, Index(10,Upper)) @inferred apply_transpose(e_l, u, Index(11,Upper)) @inferred apply_transpose(e_r, u, 4) @inferred apply_transpose(e_r, u, Index(1,Lower)) @inferred apply_transpose(e_r, u, Index(2,Lower)) @inferred apply_transpose(e_r, u, Index(6,Interior)) @inferred apply_transpose(e_r, u, Index(10,Upper)) @inferred apply_transpose(e_r, u, Index(11,Upper)) end end # # @testset "NormalDerivative" begin # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) # # d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) # d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) # d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) # d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) # # # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) # v∂x = evalOn(g, (x,y)-> 2*x + y) # v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) # # @test d_w isa TensorMapping{T,2,1} where T # @test d_w' isa TensorMapping{T,1,2} where T # # @test domain_size(d_w, (3,2)) == (2,) # @test domain_size(d_e, (3,2)) == (2,) # @test domain_size(d_s, (3,2)) == (3,) # @test domain_size(d_n, (3,2)) == (3,) # # @test size(d_w'*v) == (6,) # @test size(d_e'*v) == (6,) # @test size(d_s'*v) == (5,) # @test size(d_n'*v) == (5,) # # @test d_w'*v .≈ v∂x[1,:] # @test d_e'*v .≈ v∂x[5,:] # @test d_s'*v .≈ v∂y[:,1] # @test d_n'*v .≈ v∂y[:,6] # # # d_x_l = zeros(Float64, 5) # d_x_u = zeros(Float64, 5) # for i ∈ eachindex(d_x_l) # d_x_l[i] = op.dClosure[i-1] # d_x_u[i] = -op.dClosure[length(d_x_u)-i] # end # # d_y_l = zeros(Float64, 6) # d_y_u = zeros(Float64, 6) # for i ∈ eachindex(d_y_l) # d_y_l[i] = op.dClosure[i-1] # d_y_u[i] = -op.dClosure[length(d_y_u)-i] # end # # function prod_matrix(x,y) # G = zeros(Float64, length(x), length(y)) # for I ∈ CartesianIndices(G) # G[I] = x[I[1]]*y[I[2]] # end # # return G # end # # g_x = [1,2,3,4.0,5] # g_y = [5,4,3,2,1.0,11] # # G_w = prod_matrix(d_x_l, g_y) # G_e = prod_matrix(d_x_u, g_y) # G_s = prod_matrix(g_x, d_y_l) # G_n = prod_matrix(g_x, d_y_u) # # # @test size(d_w*g_y) == (UnknownDim,6) # @test size(d_e*g_y) == (UnknownDim,6) # @test size(d_s*g_x) == (5,UnknownDim) # @test size(d_n*g_x) == (5,UnknownDim) # # # These tests should be moved to where they are possible (i.e we know what the grid should be) # @test_broken d_w*g_y .≈ G_w # @test_broken d_e*g_y .≈ G_e # @test_broken d_s*g_x .≈ G_s # @test_broken d_n*g_x .≈ G_n # end # # @testset "BoundaryQuadrature" begin # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) # # H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) # H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) # H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) # H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) # # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) # # function get_quadrature(N) # qc = op.quadratureClosure # q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) # @assert length(q) == N # return q # end # # v_w = v[1,:] # v_e = v[10,:] # v_s = v[:,1] # v_n = v[:,11] # # q_x = spacing(g)[1].*get_quadrature(10) # q_y = spacing(g)[2].*get_quadrature(11) # # @test H_w isa TensorOperator{T,1} where T # # @test domain_size(H_w, (3,)) == (3,) # @test domain_size(H_n, (3,)) == (3,) # # @test range_size(H_w, (3,)) == (3,) # @test range_size(H_n, (3,)) == (3,) # # @test size(H_w*v_w) == (11,) # @test size(H_e*v_e) == (11,) # @test size(H_s*v_s) == (10,) # @test size(H_n*v_n) == (10,) # # @test H_w*v_w .≈ q_y.*v_w # @test H_e*v_e .≈ q_y.*v_e # @test H_s*v_s .≈ q_x.*v_s # @test H_n*v_n .≈ q_x.*v_n # # @test H_w'*v_w == H_w'*v_w # @test H_e'*v_e == H_e'*v_e # @test H_s'*v_s == H_s'*v_s # @test H_n'*v_n == H_n'*v_n # end end