Mercurial > repos > public > sbplib_julia
comparison test/testSbpOperators.jl @ 633:a78bda7084f6 feature/quadrature_as_outer_product
Merge w. default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 01 Jan 2021 16:34:55 +0100 |
parents | 08e27dee76c3 eaa8c852ddf2 |
children | fb5ac62563aa |
comparison
equal
deleted
inserted
replaced
561:04d7b4eb63ef | 633:a78bda7084f6 |
---|---|
2 using Sbplib.SbpOperators | 2 using Sbplib.SbpOperators |
3 using Sbplib.Grids | 3 using Sbplib.Grids |
4 using Sbplib.RegionIndices | 4 using Sbplib.RegionIndices |
5 using Sbplib.LazyTensors | 5 using Sbplib.LazyTensors |
6 using LinearAlgebra | 6 using LinearAlgebra |
7 using TOML | |
8 | |
9 import Sbplib.SbpOperators.Stencil | |
7 | 10 |
8 @testset "SbpOperators" begin | 11 @testset "SbpOperators" begin |
9 | 12 |
13 @testset "Stencil" begin | |
14 s = Stencil((-2,2), (1.,2.,2.,3.,4.)) | |
15 @test s isa Stencil{Float64, 5} | |
16 | |
17 @test eltype(s) == Float64 | |
18 @test SbpOperators.scale(s, 2) == Stencil((-2,2), (2.,4.,4.,6.,8.)) | |
19 | |
20 @test Stencil((1,2,3,4), center=1) == Stencil((0, 3),(1,2,3,4)) | |
21 @test Stencil((1,2,3,4), center=2) == Stencil((-1, 2),(1,2,3,4)) | |
22 @test Stencil((1,2,3,4), center=4) == Stencil((-3, 0),(1,2,3,4)) | |
23 end | |
24 | |
25 @testset "parse_rational" begin | |
26 @test SbpOperators.parse_rational("1") isa Rational | |
27 @test SbpOperators.parse_rational("1") == 1//1 | |
28 @test SbpOperators.parse_rational("1/2") isa Rational | |
29 @test SbpOperators.parse_rational("1/2") == 1//2 | |
30 @test SbpOperators.parse_rational("37/13") isa Rational | |
31 @test SbpOperators.parse_rational("37/13") == 37//13 | |
32 end | |
33 | |
34 @testset "readoperator" begin | |
35 toml_str = """ | |
36 [meta] | |
37 type = "equidistant" | |
38 | |
39 [order2] | |
40 H.inner = ["1"] | |
41 | |
42 D1.inner_stencil = ["-1/2", "0", "1/2"] | |
43 D1.closure_stencils = [ | |
44 ["-1", "1"], | |
45 ] | |
46 | |
47 d1.closure = ["-3/2", "2", "-1/2"] | |
48 | |
49 [order4] | |
50 H.closure = ["17/48", "59/48", "43/48", "49/48"] | |
51 | |
52 D2.inner_stencil = ["-1/12","4/3","-5/2","4/3","-1/12"] | |
53 D2.closure_stencils = [ | |
54 [ "2", "-5", "4", "-1", "0", "0"], | |
55 [ "1", "-2", "1", "0", "0", "0"], | |
56 [ "-4/43", "59/43", "-110/43", "59/43", "-4/43", "0"], | |
57 [ "-1/49", "0", "59/49", "-118/49", "64/49", "-4/49"], | |
58 ] | |
59 """ | |
60 | |
61 parsed_toml = TOML.parse(toml_str) | |
62 @testset "get_stencil" begin | |
63 @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil") == Stencil((-1/2, 0., 1/2), center=2) | |
64 @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil", center=1) == Stencil((-1/2, 0., 1/2); center=1) | |
65 @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil", center=3) == Stencil((-1/2, 0., 1/2); center=3) | |
66 | |
67 @test get_stencil(parsed_toml, "order2", "H", "inner") == Stencil((1.,), center=1) | |
68 | |
69 @test_throws AssertionError get_stencil(parsed_toml, "meta", "type") | |
70 @test_throws AssertionError get_stencil(parsed_toml, "order2", "D1", "closure_stencils") | |
71 end | |
72 | |
73 @testset "get_stencils" begin | |
74 @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=(1,)) == (Stencil((-1., 1.), center=1),) | |
75 @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=(2,)) == (Stencil((-1., 1.), center=2),) | |
76 @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=[2]) == (Stencil((-1., 1.), center=2),) | |
77 | |
78 @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=[1,1,1,1]) == ( | |
79 Stencil(( 2., -5., 4., -1., 0., 0.), center=1), | |
80 Stencil(( 1., -2., 1., 0., 0., 0.), center=1), | |
81 Stencil(( -4/43, 59/43, -110/43, 59/43, -4/43, 0.), center=1), | |
82 Stencil(( -1/49, 0., 59/49, -118/49, 64/49, -4/49), center=1), | |
83 ) | |
84 | |
85 @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(4,2,3,1)) == ( | |
86 Stencil(( 2., -5., 4., -1., 0., 0.), center=4), | |
87 Stencil(( 1., -2., 1., 0., 0., 0.), center=2), | |
88 Stencil(( -4/43, 59/43, -110/43, 59/43, -4/43, 0.), center=3), | |
89 Stencil(( -1/49, 0., 59/49, -118/49, 64/49, -4/49), center=1), | |
90 ) | |
91 | |
92 @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=1:4) == ( | |
93 Stencil(( 2., -5., 4., -1., 0., 0.), center=1), | |
94 Stencil(( 1., -2., 1., 0., 0., 0.), center=2), | |
95 Stencil(( -4/43, 59/43, -110/43, 59/43, -4/43, 0.), center=3), | |
96 Stencil(( -1/49, 0., 59/49, -118/49, 64/49, -4/49), center=4), | |
97 ) | |
98 | |
99 @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(1,2,3)) | |
100 @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(1,2,3,5,4)) | |
101 @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "inner_stencil",centers=(1,2)) | |
102 end | |
103 | |
104 @testset "get_tuple" begin | |
105 @test get_tuple(parsed_toml, "order2", "d1", "closure") == (-3/2, 2, -1/2) | |
106 | |
107 @test_throws AssertionError get_tuple(parsed_toml, "meta", "type") | |
108 end | |
109 end | |
110 | |
10 # @testset "apply_quadrature" begin | 111 # @testset "apply_quadrature" begin |
11 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 112 # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
12 # h = 0.5 | 113 # h = 0.5 |
13 # | 114 # |
14 # @test apply_quadrature(op, h, 1.0, 10, 100) == h | 115 # @test apply_quadrature(op, h, 1.0, 10, 100) == h |
15 # | 116 # |
16 # N = 10 | 117 # N = 10 |
27 # @test apply_quadrature(op, h, v[i], i, N) == q[i]*v[i] | 128 # @test apply_quadrature(op, h, v[i], i, N) == q[i]*v[i] |
28 # end | 129 # end |
29 # end | 130 # end |
30 | 131 |
31 @testset "SecondDerivative" begin | 132 @testset "SecondDerivative" begin |
32 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 133 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
33 L = 3.5 | 134 L = 3.5 |
34 g = EquidistantGrid(101, 0.0, L) | 135 g = EquidistantGrid(101, 0.0, L) |
35 Dₓₓ = SecondDerivative(g,op.innerStencil,op.closureStencils) | 136 Dₓₓ = SecondDerivative(g,op.innerStencil,op.closureStencils) |
36 | 137 |
37 f0(x) = 1. | 138 f0(x) = 1. |
67 @test Dₓₓ*v5 ≈ -v5 atol=5e-4 norm=l2 | 168 @test Dₓₓ*v5 ≈ -v5 atol=5e-4 norm=l2 |
68 end | 169 end |
69 | 170 |
70 | 171 |
71 @testset "Laplace2D" begin | 172 @testset "Laplace2D" begin |
72 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 173 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
73 Lx = 1.5 | 174 Lx = 1.5 |
74 Ly = 3.2 | 175 Ly = 3.2 |
75 g = EquidistantGrid((102,131), (0.0, 0.0), (Lx,Ly)) | 176 g = EquidistantGrid((102,131), (0.0, 0.0), (Lx,Ly)) |
76 L = Laplace(g, op.innerStencil, op.closureStencils) | 177 L = Laplace(g, op.innerStencil, op.closureStencils) |
77 | 178 |
109 @test L*v4 ≈ v2 atol=5e-4 norm=l2 | 210 @test L*v4 ≈ v2 atol=5e-4 norm=l2 |
110 @test L*v5 ≈ v5ₓₓ atol=5e-4 norm=l2 | 211 @test L*v5 ≈ v5ₓₓ atol=5e-4 norm=l2 |
111 end | 212 end |
112 | 213 |
113 @testset "DiagonalQuadrature" begin | 214 @testset "DiagonalQuadrature" begin |
114 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 215 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
115 Lx = π/2. | 216 Lx = π/2. |
116 Ly = Float64(π) | 217 Ly = Float64(π) |
117 g_1D = EquidistantGrid(77, 0.0, Lx) | 218 g_1D = EquidistantGrid(77, 0.0, Lx) |
118 g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | 219 g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) |
119 integral(H,v) = sum(H*v) | 220 integral(H,v) = sum(H*v) |
167 f_i(x) = 1/factorial(i)*x^i | 268 f_i(x) = 1/factorial(i)*x^i |
168 v = (v...,evalOn(g_1D,f_i)) | 269 v = (v...,evalOn(g_1D,f_i)) |
169 end | 270 end |
170 # TODO: Bug in readOperator for 2nd order | 271 # TODO: Bug in readOperator for 2nd order |
171 # # 2nd order | 272 # # 2nd order |
172 # op2 = readOperator(sbp_operators_path()*"d2_2nd.txt",sbp_operators_path()*"h_2nd.txt") | 273 # op2 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) |
173 # H2 = diagonal_quadrature(g_1D,op2.quadratureClosure) | 274 # H2 = diagonal_quadrature(g_1D,op2.quadratureClosure) |
174 # for i = 1:3 | 275 # for i = 1:3 |
175 # @test integral(H2,v[i]) ≈ v[i+1] rtol = 1e-14 | 276 # @test integral(H2,v[i]) ≈ v[i+1] rtol = 1e-14 |
176 # end | 277 # end |
177 | 278 |
178 # 4th order | 279 # 4th order |
179 op4 = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 280 op4 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
180 H4 = diagonal_quadrature(g_1D,op4.quadratureClosure) | 281 H4 = diagonal_quadrature(g_1D,op4.quadratureClosure) |
181 for i = 1:4 | 282 for i = 1:4 |
182 @test integral(H4,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 | 283 @test integral(H4,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 |
183 end | 284 end |
184 end | 285 end |
194 @inferred H_xy'*v_2D | 295 @inferred H_xy'*v_2D |
195 end | 296 end |
196 end | 297 end |
197 | 298 |
198 @testset "InverseDiagonalQuadrature" begin | 299 @testset "InverseDiagonalQuadrature" begin |
199 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 300 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
200 Lx = π/2. | 301 Lx = π/2. |
201 Ly = Float64(π) | 302 Ly = Float64(π) |
202 g_1D = EquidistantGrid(77, 0.0, Lx) | 303 g_1D = EquidistantGrid(77, 0.0, Lx) |
203 g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | 304 g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) |
204 @testset "Constructors" begin | 305 @testset "Constructors" begin |
255 @inferred Hi_x'*v_1D | 356 @inferred Hi_x'*v_1D |
256 @inferred Hi_xy*v_2D | 357 @inferred Hi_xy*v_2D |
257 @inferred Hi_xy'*v_2D | 358 @inferred Hi_xy'*v_2D |
258 end | 359 end |
259 end | 360 end |
260 # | 361 |
261 # @testset "BoundaryValue" begin | 362 @testset "BoundaryRestrictrion" begin |
262 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 363 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
263 # g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) | 364 g_1D = EquidistantGrid(11, 0.0, 1.0) |
264 # | 365 g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) |
265 # e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) | 366 |
266 # e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) | 367 @testset "Constructors" begin |
267 # e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) | 368 @testset "1D" begin |
268 # e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) | 369 e_l = BoundaryRestriction{Lower}(op.eClosure,size(g_1D)[1]) |
269 # | 370 @test e_l == BoundaryRestriction(g_1D,op.eClosure,Lower()) |
270 # v = zeros(Float64, 4, 5) | 371 @test e_l == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Lower}()) |
271 # v[:,5] = [1, 2, 3,4] | 372 @test e_l isa TensorMapping{T,0,1} where T |
272 # v[:,4] = [1, 2, 3,4] | 373 |
273 # v[:,3] = [4, 5, 6, 7] | 374 e_r = BoundaryRestriction{Upper}(op.eClosure,size(g_1D)[1]) |
274 # v[:,2] = [7, 8, 9, 10] | 375 @test e_r == BoundaryRestriction(g_1D,op.eClosure,Upper()) |
275 # v[:,1] = [10, 11, 12, 13] | 376 @test e_r == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Upper}()) |
276 # | 377 @test e_r isa TensorMapping{T,0,1} where T |
277 # @test e_w isa TensorMapping{T,2,1} where T | 378 end |
278 # @test e_w' isa TensorMapping{T,1,2} where T | 379 |
279 # | 380 @testset "2D" begin |
280 # @test domain_size(e_w, (3,2)) == (2,) | 381 e_w = boundary_restriction(g_2D,op.eClosure,CartesianBoundary{1,Upper}()) |
281 # @test domain_size(e_e, (3,2)) == (2,) | 382 @test e_w isa InflatedTensorMapping |
282 # @test domain_size(e_s, (3,2)) == (3,) | 383 @test e_w isa TensorMapping{T,1,2} where T |
283 # @test domain_size(e_n, (3,2)) == (3,) | 384 end |
284 # | 385 end |
285 # @test size(e_w'*v) == (5,) | 386 |
286 # @test size(e_e'*v) == (5,) | 387 e_l = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Lower}()) |
287 # @test size(e_s'*v) == (4,) | 388 e_r = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Upper}()) |
288 # @test size(e_n'*v) == (4,) | 389 |
289 # | 390 e_w = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Lower}()) |
290 # @test e_w'*v == [10,7,4,1.0,1] | 391 e_e = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Upper}()) |
291 # @test e_e'*v == [13,10,7,4,4.0] | 392 e_s = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Lower}()) |
292 # @test e_s'*v == [10,11,12,13.0] | 393 e_n = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Upper}()) |
293 # @test e_n'*v == [1,2,3,4.0] | 394 |
294 # | 395 @testset "Sizes" begin |
295 # g_x = [1,2,3,4.0] | 396 @testset "1D" begin |
296 # g_y = [5,4,3,2,1.0] | 397 @test domain_size(e_l) == (11,) |
297 # | 398 @test domain_size(e_r) == (11,) |
298 # G_w = zeros(Float64, (4,5)) | 399 |
299 # G_w[1,:] = g_y | 400 @test range_size(e_l) == () |
300 # | 401 @test range_size(e_r) == () |
301 # G_e = zeros(Float64, (4,5)) | 402 end |
302 # G_e[4,:] = g_y | 403 |
303 # | 404 @testset "2D" begin |
304 # G_s = zeros(Float64, (4,5)) | 405 @test domain_size(e_w) == (11,15) |
305 # G_s[:,1] = g_x | 406 @test domain_size(e_e) == (11,15) |
306 # | 407 @test domain_size(e_s) == (11,15) |
307 # G_n = zeros(Float64, (4,5)) | 408 @test domain_size(e_n) == (11,15) |
308 # G_n[:,5] = g_x | 409 |
309 # | 410 @test range_size(e_w) == (15,) |
310 # @test size(e_w*g_y) == (UnknownDim,5) | 411 @test range_size(e_e) == (15,) |
311 # @test size(e_e*g_y) == (UnknownDim,5) | 412 @test range_size(e_s) == (11,) |
312 # @test size(e_s*g_x) == (4,UnknownDim) | 413 @test range_size(e_n) == (11,) |
313 # @test size(e_n*g_x) == (4,UnknownDim) | 414 end |
314 # | 415 end |
315 # # These tests should be moved to where they are possible (i.e we know what the grid should be) | 416 |
316 # @test_broken e_w*g_y == G_w | 417 |
317 # @test_broken e_e*g_y == G_e | 418 @testset "Application" begin |
318 # @test_broken e_s*g_x == G_s | 419 @testset "1D" begin |
319 # @test_broken e_n*g_x == G_n | 420 v = evalOn(g_1D,x->1+x^2) |
320 # end | 421 u = fill(3.124) |
422 @test (e_l*v)[] == v[1] | |
423 @test (e_r*v)[] == v[end] | |
424 @test (e_r*v)[1] == v[end] | |
425 @test e_l'*u == [u[]; zeros(10)] | |
426 @test e_r'*u == [zeros(10); u[]] | |
427 end | |
428 | |
429 @testset "2D" begin | |
430 v = rand(11, 15) | |
431 u = fill(3.124) | |
432 | |
433 @test e_w*v == v[1,:] | |
434 @test e_e*v == v[end,:] | |
435 @test e_s*v == v[:,1] | |
436 @test e_n*v == v[:,end] | |
437 | |
438 | |
439 g_x = rand(11) | |
440 g_y = rand(15) | |
441 | |
442 G_w = zeros(Float64, (11,15)) | |
443 G_w[1,:] = g_y | |
444 | |
445 G_e = zeros(Float64, (11,15)) | |
446 G_e[end,:] = g_y | |
447 | |
448 G_s = zeros(Float64, (11,15)) | |
449 G_s[:,1] = g_x | |
450 | |
451 G_n = zeros(Float64, (11,15)) | |
452 G_n[:,end] = g_x | |
453 | |
454 @test e_w'*g_y == G_w | |
455 @test e_e'*g_y == G_e | |
456 @test e_s'*g_x == G_s | |
457 @test e_n'*g_x == G_n | |
458 end | |
459 | |
460 @testset "Regions" begin | |
461 u = fill(3.124) | |
462 @test (e_l'*u)[Index(1,Lower)] == 3.124 | |
463 @test (e_l'*u)[Index(2,Lower)] == 0 | |
464 @test (e_l'*u)[Index(6,Interior)] == 0 | |
465 @test (e_l'*u)[Index(10,Upper)] == 0 | |
466 @test (e_l'*u)[Index(11,Upper)] == 0 | |
467 | |
468 @test (e_r'*u)[Index(1,Lower)] == 0 | |
469 @test (e_r'*u)[Index(2,Lower)] == 0 | |
470 @test (e_r'*u)[Index(6,Interior)] == 0 | |
471 @test (e_r'*u)[Index(10,Upper)] == 0 | |
472 @test (e_r'*u)[Index(11,Upper)] == 3.124 | |
473 end | |
474 end | |
475 | |
476 @testset "Inferred" begin | |
477 v = ones(Float64, 11) | |
478 u = fill(1.) | |
479 | |
480 @inferred apply(e_l, v) | |
481 @inferred apply(e_r, v) | |
482 | |
483 @inferred apply_transpose(e_l, u, 4) | |
484 @inferred apply_transpose(e_l, u, Index(1,Lower)) | |
485 @inferred apply_transpose(e_l, u, Index(2,Lower)) | |
486 @inferred apply_transpose(e_l, u, Index(6,Interior)) | |
487 @inferred apply_transpose(e_l, u, Index(10,Upper)) | |
488 @inferred apply_transpose(e_l, u, Index(11,Upper)) | |
489 | |
490 @inferred apply_transpose(e_r, u, 4) | |
491 @inferred apply_transpose(e_r, u, Index(1,Lower)) | |
492 @inferred apply_transpose(e_r, u, Index(2,Lower)) | |
493 @inferred apply_transpose(e_r, u, Index(6,Interior)) | |
494 @inferred apply_transpose(e_r, u, Index(10,Upper)) | |
495 @inferred apply_transpose(e_r, u, Index(11,Upper)) | |
496 end | |
497 | |
498 end | |
321 # | 499 # |
322 # @testset "NormalDerivative" begin | 500 # @testset "NormalDerivative" begin |
323 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 501 # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
324 # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) | 502 # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) |
325 # | 503 # |
326 # d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) | 504 # d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) |
327 # d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) | 505 # d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) |
328 # d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) | 506 # d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) |
395 # @test_broken d_s*g_x .≈ G_s | 573 # @test_broken d_s*g_x .≈ G_s |
396 # @test_broken d_n*g_x .≈ G_n | 574 # @test_broken d_n*g_x .≈ G_n |
397 # end | 575 # end |
398 # | 576 # |
399 # @testset "BoundaryQuadrature" begin | 577 # @testset "BoundaryQuadrature" begin |
400 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 578 # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
401 # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) | 579 # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) |
402 # | 580 # |
403 # H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) | 581 # H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) |
404 # H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) | 582 # H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) |
405 # H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) | 583 # H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) |