changeset 634:fb5ac62563aa feature/volume_and_boundary_operators

Integrate feature/quadrature_as_outer_product into branch, before closing feature/quadrature_as_outer_product. (It is now obsolete apart from tests)
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 01 Jan 2021 16:39:57 +0100
parents bf8b66c596f7 (current diff) a78bda7084f6 (diff)
children a1dfaf305f41
files src/SbpOperators/SbpOperators.jl src/SbpOperators/quadrature/diagonal_inner_product.jl src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl src/SbpOperators/quadrature/inverse_quadrature.jl src/SbpOperators/quadrature/quadrature.jl test/testSbpOperators.jl
diffstat 8 files changed, 321 insertions(+), 232 deletions(-) [+]
line wrap: on
line diff
--- a/src/SbpOperators/SbpOperators.jl	Thu Dec 31 08:41:07 2020 +0100
+++ b/src/SbpOperators/SbpOperators.jl	Fri Jan 01 16:39:57 2021 +0100
@@ -11,10 +11,8 @@
 include("volumeops/volume_operator.jl")
 include("volumeops/derivatives/secondderivative.jl")
 include("volumeops/laplace/laplace.jl")
-include("quadrature/diagonal_inner_product.jl")
-include("quadrature/quadrature.jl")
-include("quadrature/inverse_diagonal_inner_product.jl")
-include("quadrature/inverse_quadrature.jl")
+include("quadrature/diagonal_quadrature.jl")
+include("quadrature/inverse_diagonal_quadrature.jl")
 include("boundaryops/boundary_operator.jl")
 include("boundaryops/boundary_restriction.jl")
 include("boundaryops/normal_derivative.jl")
--- a/src/SbpOperators/quadrature/diagonal_inner_product.jl	Thu Dec 31 08:41:07 2020 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,41 +0,0 @@
-export DiagonalInnerProduct, closuresize
-"""
-    DiagonalInnerProduct{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
-
-Implements the diagnoal norm operator `H` of Dim dimension as a TensorMapping
-"""
-struct DiagonalInnerProduct{T,M} <: TensorMapping{T,1,1}
-    h::T
-    quadratureClosure::NTuple{M,T}
-    size::Tuple{Int}
-end
-
-function DiagonalInnerProduct(g::EquidistantGrid{1}, quadratureClosure)
-    return DiagonalInnerProduct(spacing(g)[1], quadratureClosure, size(g))
-end
-
-LazyTensors.range_size(H::DiagonalInnerProduct) = H.size
-LazyTensors.domain_size(H::DiagonalInnerProduct) = H.size
-
-function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Lower}) where T
-    return @inbounds H.h*H.quadratureClosure[Int(i)]*v[Int(i)]
-end
-
-function LazyTensors.apply(H::DiagonalInnerProduct{T},v::AbstractVector{T}, i::Index{Upper}) where T
-    N = length(v);
-    return @inbounds H.h*H.quadratureClosure[N-Int(i)+1]*v[Int(i)]
-end
-
-function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Interior}) where T
-    return @inbounds H.h*v[Int(i)]
-end
-
-function LazyTensors.apply(H::DiagonalInnerProduct{T},  v::AbstractVector{T}, i) where T
-    N = length(v);
-    r = getregion(i, closuresize(H), N)
-    return LazyTensors.apply(H, v, Index(i, r))
-end
-
-LazyTensors.apply_transpose(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i)
-
-closuresize(H::DiagonalInnerProduct{T,M}) where {T,M} = M
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/quadrature/diagonal_quadrature.jl	Fri Jan 01 16:39:57 2021 +0100
@@ -0,0 +1,92 @@
+"""
+diagonal_quadrature(g,quadrature_closure)
+
+Constructs the diagonal quadrature operator `H` on a grid of `Dim` dimensions as
+a `TensorMapping`. The one-dimensional operator is a `DiagonalQuadrature`, while
+the multi-dimensional operator is the outer-product of the
+one-dimensional operators in each coordinate direction.
+"""
+function diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim
+    H = DiagonalQuadrature(restrict(g,1), quadrature_closure)
+    for i ∈ 2:Dim
+        H = H⊗DiagonalQuadrature(restrict(g,i), quadrature_closure)
+    end
+    return H
+end
+export diagonal_quadrature
+
+"""
+    DiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
+
+Implements the one-dimensional diagonal quadrature operator as a `TensorMapping`
+The quadrature is defined by the quadrature interval length `h`, the quadrature
+closure weights `closure` and the number of quadrature intervals `size`. The
+interior stencil has the weight 1.
+"""
+struct DiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
+    h::T
+    closure::NTuple{M,T}
+    size::Tuple{Int}
+end
+export DiagonalQuadrature
+
+"""
+    DiagonalQuadrature(g, quadrature_closure)
+
+Constructs the `DiagonalQuadrature` on the `EquidistantGrid` `g` with
+closure given by `quadrature_closure`.
+"""
+function DiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure)
+    return DiagonalQuadrature(spacing(g)[1], quadrature_closure, size(g))
+end
+
+"""
+    range_size(H::DiagonalQuadrature)
+
+The size of an object in the range of `H`
+"""
+LazyTensors.range_size(H::DiagonalQuadrature) = H.size
+
+"""
+    domain_size(H::DiagonalQuadrature)
+
+The size of an object in the domain of `H`
+"""
+LazyTensors.domain_size(H::DiagonalQuadrature) = H.size
+
+"""
+    apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T
+Implements the application `(H*v)[i]` an `Index{R}` where `R` is one of the regions
+`Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first
+be converted to an `Index{R}`.
+"""
+function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T
+    return @inbounds H.h*H.closure[Int(i)]*v[Int(i)]
+end
+
+function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, i::Index{Upper}) where T
+    N = length(v); #TODO: Use dim_size here?
+    return @inbounds H.h*H.closure[N-Int(i)+1]*v[Int(i)]
+end
+
+function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T
+    return @inbounds H.h*v[Int(i)]
+end
+
+function LazyTensors.apply(H::DiagonalQuadrature{T},  v::AbstractVector{T}, i) where T
+    N = length(v); #TODO: Use dim_size here?
+    r = getregion(i, closure_size(H), N)
+    return LazyTensors.apply(H, v, Index(i, r))
+end
+
+"""
+    apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T
+Implements the application (H'*v)[I]. The operator is self-adjoint.
+"""
+LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i)
+
+"""
+    closure_size(H)
+Returns the size of the closure stencil of a DiagonalQuadrature `H`.
+"""
+closure_size(H::DiagonalQuadrature{T,M}) where {T,M} = M
--- a/src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl	Thu Dec 31 08:41:07 2020 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,43 +0,0 @@
-export InverseDiagonalInnerProduct, closuresize
-"""
-    InverseDiagonalInnerProduct{Dim,T<:Real,M} <: TensorMapping{T,1,1}
-
-Implements the inverse diagonal inner product operator `Hi` of as a 1D TensorOperator
-"""
-struct InverseDiagonalInnerProduct{T<:Real,M} <: TensorMapping{T,1,1}
-    h_inv::T
-    inverseQuadratureClosure::NTuple{M,T}
-    size::Tuple{Int}
-end
-
-function InverseDiagonalInnerProduct(g::EquidistantGrid{1}, quadratureClosure)
-    return InverseDiagonalInnerProduct(inverse_spacing(g)[1], 1 ./ quadratureClosure, size(g))
-end
-
-LazyTensors.range_size(Hi::InverseDiagonalInnerProduct) = Hi.size
-LazyTensors.domain_size(Hi::InverseDiagonalInnerProduct) = Hi.size
-
-
-function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Lower}) where T
-    return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[Int(i)]*v[Int(i)]
-end
-
-function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Upper}) where T
-    N = length(v);
-    return @inbounds Hi.h_inv*Hi.inverseQuadratureClosure[N-Int(i)+1]*v[Int(i)]
-end
-
-function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i::Index{Interior}) where T
-    return @inbounds Hi.h_inv*v[Int(i)]
-end
-
-function LazyTensors.apply(Hi::InverseDiagonalInnerProduct{T},  v::AbstractVector{T}, i) where T
-    N = length(v);
-    r = getregion(i, closuresize(Hi), N)
-    return LazyTensors.apply(Hi, v, Index(i, r))
-end
-
-LazyTensors.apply_transpose(Hi::InverseDiagonalInnerProduct{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(Hi,v,i)
-
-
-closuresize(Hi::InverseDiagonalInnerProduct{T,M}) where {T,M} =  M
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/quadrature/inverse_diagonal_quadrature.jl	Fri Jan 01 16:39:57 2021 +0100
@@ -0,0 +1,89 @@
+"""
+inverse_diagonal_quadrature(g,quadrature_closure)
+
+Constructs the inverse `Hi` of a `DiagonalQuadrature` on a grid of `Dim` dimensions as
+a `TensorMapping`. The one-dimensional operator is a `InverseDiagonalQuadrature`, while
+the multi-dimensional operator is the outer-product of the one-dimensional operators
+in each coordinate direction.
+"""
+function inverse_diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim
+    Hi = InverseDiagonalQuadrature(restrict(g,1), quadrature_closure)
+    for i ∈ 2:Dim
+        Hi = Hi⊗InverseDiagonalQuadrature(restrict(g,i), quadrature_closure)
+    end
+    return Hi
+end
+export inverse_diagonal_quadrature
+
+
+"""
+    InverseDiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
+
+Implements the inverse of a one-dimensional `DiagonalQuadrature` as a `TensorMapping`
+The operator is defined by the reciprocal of the quadrature interval length `h_inv`, the
+reciprocal of the quadrature closure weights `closure` and the number of quadrature intervals `size`. The
+interior stencil has the weight 1.
+"""
+struct InverseDiagonalQuadrature{T<:Real,M} <: TensorMapping{T,1,1}
+    h_inv::T
+    closure::NTuple{M,T}
+    size::Tuple{Int}
+end
+export InverseDiagonalQuadrature
+
+"""
+    InverseDiagonalQuadrature(g, quadrature_closure)
+
+Constructs the `InverseDiagonalQuadrature` on the `EquidistantGrid` `g` with
+closure given by the reciprocal of `quadrature_closure`.
+"""
+function InverseDiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure)
+    return InverseDiagonalQuadrature(inverse_spacing(g)[1], 1 ./ quadrature_closure, size(g))
+end
+
+"""
+    domain_size(Hi::InverseDiagonalQuadrature)
+
+The size of an object in the range of `Hi`
+"""
+LazyTensors.range_size(Hi::InverseDiagonalQuadrature) = Hi.size
+
+"""
+    domain_size(Hi::InverseDiagonalQuadrature)
+
+The size of an object in the domain of `Hi`
+"""
+LazyTensors.domain_size(Hi::InverseDiagonalQuadrature) = Hi.size
+
+"""
+    apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T
+Implements the application `(Hi*v)[i]` an `Index{R}` where `R` is one of the regions
+`Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first
+be converted to an `Index{R}`.
+"""
+function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T
+    return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)]
+end
+
+function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Upper}) where T
+    N = length(v);
+    return @inbounds Hi.h_inv*Hi.closure[N-Int(i)+1]*v[Int(i)]
+end
+
+function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T
+    return @inbounds Hi.h_inv*v[Int(i)]
+end
+
+function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T},  v::AbstractVector{T}, i) where T
+    N = length(v);
+    r = getregion(i, closure_size(Hi), N)
+    return LazyTensors.apply(Hi, v, Index(i, r))
+end
+
+LazyTensors.apply_transpose(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(Hi,v,i)
+
+"""
+    closure_size(Hi)
+Returns the size of the closure stencil of a InverseDiagonalQuadrature `Hi`.
+"""
+closure_size(Hi::InverseDiagonalQuadrature{T,M}) where {T,M} =  M
--- a/src/SbpOperators/quadrature/inverse_quadrature.jl	Thu Dec 31 08:41:07 2020 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,47 +0,0 @@
-export InverseQuadrature
-"""
-    InverseQuadrature{Dim,T<:Real,M,K} <: TensorMapping{T,Dim,Dim}
-
-Implements the inverse quadrature operator `Qi` of Dim dimension as a TensorMapping
-The multi-dimensional tensor operator consists of a tuple of 1D InverseDiagonalInnerProduct
-tensor operators.
-"""
-struct InverseQuadrature{Dim,T<:Real,M} <: TensorMapping{T,Dim,Dim}
-    Hi::NTuple{Dim,InverseDiagonalInnerProduct{T,M}}
-end
-
-
-function InverseQuadrature(g::EquidistantGrid{Dim}, quadratureClosure) where Dim
-    Hi = ()
-    for i ∈ 1:Dim
-        Hi = (Hi..., InverseDiagonalInnerProduct(restrict(g,i), quadratureClosure))
-    end
-
-    return InverseQuadrature(Hi)
-end
-
-LazyTensors.range_size(Hi::InverseQuadrature) = getindex.(range_size.(Hi.Hi),1)
-LazyTensors.domain_size(Hi::InverseQuadrature) = getindex.(domain_size.(Hi.Hi),1)
-
-LazyTensors.domain_size(Qi::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size
-
-function LazyTensors.apply(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Any,Dim}) where {T,Dim}
-    error("not implemented")
-end
-
-@inline function LazyTensors.apply(Qi::InverseQuadrature{1,T}, v::AbstractVector{T}, i) where T
-    @inbounds q = apply(Qi.Hi[1], v , i)
-    return q
-end
-
-@inline function LazyTensors.apply(Qi::InverseQuadrature{2,T}, v::AbstractArray{T,2}, i,j) where T
-    # InverseQuadrature in x direction
-    @inbounds vx = view(v, :, Int(j))
-    @inbounds qx_inv = apply(Qi.Hi[1], vx , i)
-    # InverseQuadrature in y-direction
-    @inbounds vy = view(v, Int(i), :)
-    @inbounds qy_inv = apply(Qi.Hi[2], vy, j)
-    return qx_inv*qy_inv
-end
-
-LazyTensors.apply_transpose(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Any,Dim}) where {Dim,T} = LazyTensors.apply(Qi,v,I...)
--- a/src/SbpOperators/quadrature/quadrature.jl	Thu Dec 31 08:41:07 2020 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,44 +0,0 @@
-export Quadrature
-"""
-    Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
-
-Implements the quadrature operator `Q` of Dim dimension as a TensorMapping
-The multi-dimensional tensor operator consists of a tuple of 1D DiagonalInnerProduct H
-tensor operators.
-"""
-struct Quadrature{Dim,T<:Real,M} <: TensorMapping{T,Dim,Dim}
-    H::NTuple{Dim,DiagonalInnerProduct{T,M}}
-end
-
-function Quadrature(g::EquidistantGrid{Dim}, quadratureClosure) where Dim
-    H = ()
-    for i ∈ 1:Dim
-        H = (H..., DiagonalInnerProduct(restrict(g,i), quadratureClosure))
-    end
-
-    return Quadrature(H)
-end
-
-LazyTensors.range_size(H::Quadrature) = getindex.(range_size.(H.H),1)
-LazyTensors.domain_size(H::Quadrature) = getindex.(domain_size.(H.H),1)
-
-function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Any,Dim}) where {T,Dim}
-    error("not implemented")
-end
-
-function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, i) where T
-    @inbounds q = apply(Q.H[1], v , i)
-    return q
-end
-
-function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, i, j) where T
-    # Quadrature in x direction
-    @inbounds vx = view(v, :, Int(j))
-    @inbounds qx = apply(Q.H[1], vx , i)
-    # Quadrature in y-direction
-    @inbounds vy = view(v, Int(i), :)
-    @inbounds qy = apply(Q.H[2], vy, j)
-    return qx*qy
-end
-
-LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Any,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I...)
--- a/test/testSbpOperators.jl	Thu Dec 31 08:41:07 2020 +0100
+++ b/test/testSbpOperators.jl	Fri Jan 01 16:39:57 2021 +0100
@@ -405,67 +405,152 @@
     end
 end
 
-@testset "DiagonalInnerProduct" begin
+@testset "DiagonalQuadrature" begin
     op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-    L = 2.3
-    g = EquidistantGrid(77, 0.0, L)
-    H = DiagonalInnerProduct(g,op.quadratureClosure)
-    v = ones(Float64, size(g))
+    Lx = π/2.
+    Ly = Float64(π)
+    g_1D = EquidistantGrid(77, 0.0, Lx)
+    g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
+    integral(H,v) = sum(H*v)
+    @testset "Constructors" begin
+        # 1D
+        H_x = DiagonalQuadrature(spacing(g_1D)[1],op.quadratureClosure,size(g_1D));
+        @test H_x == DiagonalQuadrature(g_1D,op.quadratureClosure)
+        @test H_x == diagonal_quadrature(g_1D,op.quadratureClosure)
+        @test H_x isa TensorMapping{T,1,1} where T
+        @test H_x' isa TensorMapping{T,1,1} where T
+        # 2D
+        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
+        @test H_xy isa TensorMappingComposition
+        @test H_xy isa TensorMapping{T,2,2} where T
+        @test H_xy' isa TensorMapping{T,2,2} where T
+    end
+
+    @testset "Sizes" begin
+        # 1D
+        H_x = diagonal_quadrature(g_1D,op.quadratureClosure)
+        @test domain_size(H_x) == size(g_1D)
+        @test range_size(H_x) == size(g_1D)
+        # 2D
+        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
+        @test domain_size(H_xy) == size(g_2D)
+        @test range_size(H_xy) == size(g_2D)
+    end
 
-    @test H isa TensorMapping{T,1,1} where T
-    @test H' isa TensorMapping{T,1,1} where T
-    @test sum(H*v) ≈ L
-    @test H*v == H'*v
+    @testset "Application" begin
+        # 1D
+        H_x = diagonal_quadrature(g_1D,op.quadratureClosure)
+        a = 3.2
+        v_1D = a*ones(Float64, size(g_1D))
+        u_1D = evalOn(g_1D,x->sin(x))
+        @test integral(H_x,v_1D) ≈ a*Lx rtol = 1e-13
+        @test integral(H_x,u_1D) ≈ 1. rtol = 1e-8
+        @test H_x*v_1D == H_x'*v_1D
+        # 2D
+        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
+        b = 2.1
+        v_2D = b*ones(Float64, size(g_2D))
+        u_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y))
+        @test integral(H_xy,v_2D) ≈ b*Lx*Ly rtol = 1e-13
+        @test integral(H_xy,u_2D) ≈ π rtol = 1e-8
+        @test H_xy*v_2D ≈ H_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason?
+    end
+
+    @testset "Accuracy" begin
+        v = ()
+        for i = 0:4
+            f_i(x) = 1/factorial(i)*x^i
+            v = (v...,evalOn(g_1D,f_i))
+        end
+        # TODO: Bug in readOperator for 2nd order
+        # # 2nd order
+        # op2 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
+        # H2 = diagonal_quadrature(g_1D,op2.quadratureClosure)
+        # for i = 1:3
+        #     @test integral(H2,v[i]) ≈ v[i+1] rtol = 1e-14
+        # end
+
+        # 4th order
+        op4 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+        H4 = diagonal_quadrature(g_1D,op4.quadratureClosure)
+        for i = 1:4
+            @test integral(H4,v[i]) ≈ v[i+1][end] -  v[i+1][1] rtol = 1e-14
+        end
+    end
+
+    @testset "Inferred" begin
+        H_x = diagonal_quadrature(g_1D,op.quadratureClosure)
+        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
+        v_1D = ones(Float64, size(g_1D))
+        v_2D = ones(Float64, size(g_2D))
+        @inferred H_x*v_1D
+        @inferred H_x'*v_1D
+        @inferred H_xy*v_2D
+        @inferred H_xy'*v_2D
+    end
 end
 
-@testset "Quadrature" begin
-    op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-    Lx = 2.3
-    Ly = 5.2
-    g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
-
-    Q = Quadrature(g, op.quadratureClosure)
-
-    @test Q isa TensorMapping{T,2,2} where T
-    @test Q' isa TensorMapping{T,2,2} where T
-
-    v = ones(Float64, size(g))
-    @test sum(Q*v) ≈ Lx*Ly
-
-    v = 2*ones(Float64, size(g))
-    @test_broken sum(Q*v) ≈ 2*Lx*Ly
-
-    @test Q*v == Q'*v
-end
-
-@testset "InverseDiagonalInnerProduct" begin
+@testset "InverseDiagonalQuadrature" begin
     op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-    L = 2.3
-    g = EquidistantGrid(77, 0.0, L)
-    H = DiagonalInnerProduct(g, op.quadratureClosure)
-    Hi = InverseDiagonalInnerProduct(g,op.quadratureClosure)
-    v = evalOn(g, x->sin(x))
+    Lx = π/2.
+    Ly = Float64(π)
+    g_1D = EquidistantGrid(77, 0.0, Lx)
+    g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
+    @testset "Constructors" begin
+        # 1D
+        Hi_x = InverseDiagonalQuadrature(inverse_spacing(g_1D)[1], 1. ./ op.quadratureClosure, size(g_1D));
+        @test Hi_x == InverseDiagonalQuadrature(g_1D,op.quadratureClosure)
+        @test Hi_x == inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
+        @test Hi_x isa TensorMapping{T,1,1} where T
+        @test Hi_x' isa TensorMapping{T,1,1} where T
 
-    @test Hi isa TensorMapping{T,1,1} where T
-    @test Hi' isa TensorMapping{T,1,1} where T
-    @test Hi*H*v ≈ v
-    @test Hi*v == Hi'*v
-end
+        # 2D
+        Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
+        @test Hi_xy isa TensorMappingComposition
+        @test Hi_xy isa TensorMapping{T,2,2} where T
+        @test Hi_xy' isa TensorMapping{T,2,2} where T
+    end
+
+    @testset "Sizes" begin
+        # 1D
+        Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
+        @test domain_size(Hi_x) == size(g_1D)
+        @test range_size(Hi_x) == size(g_1D)
+        # 2D
+        Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
+        @test domain_size(Hi_xy) == size(g_2D)
+        @test range_size(Hi_xy) == size(g_2D)
+    end
 
-@testset "InverseQuadrature" begin
-    op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-    Lx = 7.3
-    Ly = 8.2
-    g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
+    @testset "Application" begin
+        # 1D
+        H_x = diagonal_quadrature(g_1D,op.quadratureClosure)
+        Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
+        v_1D = evalOn(g_1D,x->sin(x))
+        u_1D = evalOn(g_1D,x->x^3-x^2+1)
+        @test Hi_x*H_x*v_1D ≈ v_1D rtol = 1e-15
+        @test Hi_x*H_x*u_1D ≈ u_1D rtol = 1e-15
+        @test Hi_x*v_1D == Hi_x'*v_1D
+        # 2D
+        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
+        Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
+        v_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y))
+        u_2D = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y))
+        @test Hi_xy*H_xy*v_2D ≈ v_2D rtol = 1e-15
+        @test Hi_xy*H_xy*u_2D ≈ u_2D rtol = 1e-15
+        @test Hi_xy*v_2D ≈ Hi_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason?
+    end
 
-    Q = Quadrature(g, op.quadratureClosure)
-    Qinv = InverseQuadrature(g, op.quadratureClosure)
-    v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
-
-    @test Qinv isa TensorMapping{T,2,2} where T
-    @test Qinv' isa TensorMapping{T,2,2} where T
-    @test_broken Qinv*(Q*v) ≈ v
-    @test Qinv*v == Qinv'*v
+    @testset "Inferred" begin
+        Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
+        Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
+        v_1D = ones(Float64, size(g_1D))
+        v_2D = ones(Float64, size(g_2D))
+        @inferred Hi_x*v_1D
+        @inferred Hi_x'*v_1D
+        @inferred Hi_xy*v_2D
+        @inferred Hi_xy'*v_2D
+    end
 end
 
 @testset "BoundaryOperator" begin