changeset 636:a1dfaf305f41 feature/volume_and_boundary_operators

Move SbpOpertors/quadrature to SbpOperators/volumeops/
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 01 Jan 2021 16:45:48 +0100
parents fb5ac62563aa
children 4a81812150f4
files src/SbpOperators/SbpOperators.jl src/SbpOperators/quadrature/diagonal_quadrature.jl src/SbpOperators/quadrature/inverse_diagonal_quadrature.jl src/SbpOperators/volumeops/quadratures/diagonal_quadrature.jl src/SbpOperators/volumeops/quadratures/inverse_diagonal_quadrature.jl
diffstat 5 files changed, 183 insertions(+), 183 deletions(-) [+]
line wrap: on
line diff
--- a/src/SbpOperators/SbpOperators.jl	Fri Jan 01 16:39:57 2021 +0100
+++ b/src/SbpOperators/SbpOperators.jl	Fri Jan 01 16:45:48 2021 +0100
@@ -11,8 +11,8 @@
 include("volumeops/volume_operator.jl")
 include("volumeops/derivatives/secondderivative.jl")
 include("volumeops/laplace/laplace.jl")
-include("quadrature/diagonal_quadrature.jl")
-include("quadrature/inverse_diagonal_quadrature.jl")
+include("volumeops/quadratures/diagonal_quadrature.jl")
+include("volumeops/quadratures/inverse_diagonal_quadrature.jl")
 include("boundaryops/boundary_operator.jl")
 include("boundaryops/boundary_restriction.jl")
 include("boundaryops/normal_derivative.jl")
--- a/src/SbpOperators/quadrature/diagonal_quadrature.jl	Fri Jan 01 16:39:57 2021 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,92 +0,0 @@
-"""
-diagonal_quadrature(g,quadrature_closure)
-
-Constructs the diagonal quadrature operator `H` on a grid of `Dim` dimensions as
-a `TensorMapping`. The one-dimensional operator is a `DiagonalQuadrature`, while
-the multi-dimensional operator is the outer-product of the
-one-dimensional operators in each coordinate direction.
-"""
-function diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim
-    H = DiagonalQuadrature(restrict(g,1), quadrature_closure)
-    for i ∈ 2:Dim
-        H = H⊗DiagonalQuadrature(restrict(g,i), quadrature_closure)
-    end
-    return H
-end
-export diagonal_quadrature
-
-"""
-    DiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
-
-Implements the one-dimensional diagonal quadrature operator as a `TensorMapping`
-The quadrature is defined by the quadrature interval length `h`, the quadrature
-closure weights `closure` and the number of quadrature intervals `size`. The
-interior stencil has the weight 1.
-"""
-struct DiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
-    h::T
-    closure::NTuple{M,T}
-    size::Tuple{Int}
-end
-export DiagonalQuadrature
-
-"""
-    DiagonalQuadrature(g, quadrature_closure)
-
-Constructs the `DiagonalQuadrature` on the `EquidistantGrid` `g` with
-closure given by `quadrature_closure`.
-"""
-function DiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure)
-    return DiagonalQuadrature(spacing(g)[1], quadrature_closure, size(g))
-end
-
-"""
-    range_size(H::DiagonalQuadrature)
-
-The size of an object in the range of `H`
-"""
-LazyTensors.range_size(H::DiagonalQuadrature) = H.size
-
-"""
-    domain_size(H::DiagonalQuadrature)
-
-The size of an object in the domain of `H`
-"""
-LazyTensors.domain_size(H::DiagonalQuadrature) = H.size
-
-"""
-    apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T
-Implements the application `(H*v)[i]` an `Index{R}` where `R` is one of the regions
-`Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first
-be converted to an `Index{R}`.
-"""
-function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T
-    return @inbounds H.h*H.closure[Int(i)]*v[Int(i)]
-end
-
-function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, i::Index{Upper}) where T
-    N = length(v); #TODO: Use dim_size here?
-    return @inbounds H.h*H.closure[N-Int(i)+1]*v[Int(i)]
-end
-
-function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T
-    return @inbounds H.h*v[Int(i)]
-end
-
-function LazyTensors.apply(H::DiagonalQuadrature{T},  v::AbstractVector{T}, i) where T
-    N = length(v); #TODO: Use dim_size here?
-    r = getregion(i, closure_size(H), N)
-    return LazyTensors.apply(H, v, Index(i, r))
-end
-
-"""
-    apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T
-Implements the application (H'*v)[I]. The operator is self-adjoint.
-"""
-LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i)
-
-"""
-    closure_size(H)
-Returns the size of the closure stencil of a DiagonalQuadrature `H`.
-"""
-closure_size(H::DiagonalQuadrature{T,M}) where {T,M} = M
--- a/src/SbpOperators/quadrature/inverse_diagonal_quadrature.jl	Fri Jan 01 16:39:57 2021 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,89 +0,0 @@
-"""
-inverse_diagonal_quadrature(g,quadrature_closure)
-
-Constructs the inverse `Hi` of a `DiagonalQuadrature` on a grid of `Dim` dimensions as
-a `TensorMapping`. The one-dimensional operator is a `InverseDiagonalQuadrature`, while
-the multi-dimensional operator is the outer-product of the one-dimensional operators
-in each coordinate direction.
-"""
-function inverse_diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim
-    Hi = InverseDiagonalQuadrature(restrict(g,1), quadrature_closure)
-    for i ∈ 2:Dim
-        Hi = Hi⊗InverseDiagonalQuadrature(restrict(g,i), quadrature_closure)
-    end
-    return Hi
-end
-export inverse_diagonal_quadrature
-
-
-"""
-    InverseDiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
-
-Implements the inverse of a one-dimensional `DiagonalQuadrature` as a `TensorMapping`
-The operator is defined by the reciprocal of the quadrature interval length `h_inv`, the
-reciprocal of the quadrature closure weights `closure` and the number of quadrature intervals `size`. The
-interior stencil has the weight 1.
-"""
-struct InverseDiagonalQuadrature{T<:Real,M} <: TensorMapping{T,1,1}
-    h_inv::T
-    closure::NTuple{M,T}
-    size::Tuple{Int}
-end
-export InverseDiagonalQuadrature
-
-"""
-    InverseDiagonalQuadrature(g, quadrature_closure)
-
-Constructs the `InverseDiagonalQuadrature` on the `EquidistantGrid` `g` with
-closure given by the reciprocal of `quadrature_closure`.
-"""
-function InverseDiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure)
-    return InverseDiagonalQuadrature(inverse_spacing(g)[1], 1 ./ quadrature_closure, size(g))
-end
-
-"""
-    domain_size(Hi::InverseDiagonalQuadrature)
-
-The size of an object in the range of `Hi`
-"""
-LazyTensors.range_size(Hi::InverseDiagonalQuadrature) = Hi.size
-
-"""
-    domain_size(Hi::InverseDiagonalQuadrature)
-
-The size of an object in the domain of `Hi`
-"""
-LazyTensors.domain_size(Hi::InverseDiagonalQuadrature) = Hi.size
-
-"""
-    apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T
-Implements the application `(Hi*v)[i]` an `Index{R}` where `R` is one of the regions
-`Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first
-be converted to an `Index{R}`.
-"""
-function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T
-    return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)]
-end
-
-function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Upper}) where T
-    N = length(v);
-    return @inbounds Hi.h_inv*Hi.closure[N-Int(i)+1]*v[Int(i)]
-end
-
-function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T
-    return @inbounds Hi.h_inv*v[Int(i)]
-end
-
-function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T},  v::AbstractVector{T}, i) where T
-    N = length(v);
-    r = getregion(i, closure_size(Hi), N)
-    return LazyTensors.apply(Hi, v, Index(i, r))
-end
-
-LazyTensors.apply_transpose(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(Hi,v,i)
-
-"""
-    closure_size(Hi)
-Returns the size of the closure stencil of a InverseDiagonalQuadrature `Hi`.
-"""
-closure_size(Hi::InverseDiagonalQuadrature{T,M}) where {T,M} =  M
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/volumeops/quadratures/diagonal_quadrature.jl	Fri Jan 01 16:45:48 2021 +0100
@@ -0,0 +1,92 @@
+"""
+diagonal_quadrature(g,quadrature_closure)
+
+Constructs the diagonal quadrature operator `H` on a grid of `Dim` dimensions as
+a `TensorMapping`. The one-dimensional operator is a `DiagonalQuadrature`, while
+the multi-dimensional operator is the outer-product of the
+one-dimensional operators in each coordinate direction.
+"""
+function diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim
+    H = DiagonalQuadrature(restrict(g,1), quadrature_closure)
+    for i ∈ 2:Dim
+        H = H⊗DiagonalQuadrature(restrict(g,i), quadrature_closure)
+    end
+    return H
+end
+export diagonal_quadrature
+
+"""
+    DiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
+
+Implements the one-dimensional diagonal quadrature operator as a `TensorMapping`
+The quadrature is defined by the quadrature interval length `h`, the quadrature
+closure weights `closure` and the number of quadrature intervals `size`. The
+interior stencil has the weight 1.
+"""
+struct DiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
+    h::T
+    closure::NTuple{M,T}
+    size::Tuple{Int}
+end
+export DiagonalQuadrature
+
+"""
+    DiagonalQuadrature(g, quadrature_closure)
+
+Constructs the `DiagonalQuadrature` on the `EquidistantGrid` `g` with
+closure given by `quadrature_closure`.
+"""
+function DiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure)
+    return DiagonalQuadrature(spacing(g)[1], quadrature_closure, size(g))
+end
+
+"""
+    range_size(H::DiagonalQuadrature)
+
+The size of an object in the range of `H`
+"""
+LazyTensors.range_size(H::DiagonalQuadrature) = H.size
+
+"""
+    domain_size(H::DiagonalQuadrature)
+
+The size of an object in the domain of `H`
+"""
+LazyTensors.domain_size(H::DiagonalQuadrature) = H.size
+
+"""
+    apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T
+Implements the application `(H*v)[i]` an `Index{R}` where `R` is one of the regions
+`Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first
+be converted to an `Index{R}`.
+"""
+function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T
+    return @inbounds H.h*H.closure[Int(i)]*v[Int(i)]
+end
+
+function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, i::Index{Upper}) where T
+    N = length(v); #TODO: Use dim_size here?
+    return @inbounds H.h*H.closure[N-Int(i)+1]*v[Int(i)]
+end
+
+function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T
+    return @inbounds H.h*v[Int(i)]
+end
+
+function LazyTensors.apply(H::DiagonalQuadrature{T},  v::AbstractVector{T}, i) where T
+    N = length(v); #TODO: Use dim_size here?
+    r = getregion(i, closure_size(H), N)
+    return LazyTensors.apply(H, v, Index(i, r))
+end
+
+"""
+    apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T
+Implements the application (H'*v)[I]. The operator is self-adjoint.
+"""
+LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i)
+
+"""
+    closure_size(H)
+Returns the size of the closure stencil of a DiagonalQuadrature `H`.
+"""
+closure_size(H::DiagonalQuadrature{T,M}) where {T,M} = M
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/volumeops/quadratures/inverse_diagonal_quadrature.jl	Fri Jan 01 16:45:48 2021 +0100
@@ -0,0 +1,89 @@
+"""
+inverse_diagonal_quadrature(g,quadrature_closure)
+
+Constructs the inverse `Hi` of a `DiagonalQuadrature` on a grid of `Dim` dimensions as
+a `TensorMapping`. The one-dimensional operator is a `InverseDiagonalQuadrature`, while
+the multi-dimensional operator is the outer-product of the one-dimensional operators
+in each coordinate direction.
+"""
+function inverse_diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim
+    Hi = InverseDiagonalQuadrature(restrict(g,1), quadrature_closure)
+    for i ∈ 2:Dim
+        Hi = Hi⊗InverseDiagonalQuadrature(restrict(g,i), quadrature_closure)
+    end
+    return Hi
+end
+export inverse_diagonal_quadrature
+
+
+"""
+    InverseDiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
+
+Implements the inverse of a one-dimensional `DiagonalQuadrature` as a `TensorMapping`
+The operator is defined by the reciprocal of the quadrature interval length `h_inv`, the
+reciprocal of the quadrature closure weights `closure` and the number of quadrature intervals `size`. The
+interior stencil has the weight 1.
+"""
+struct InverseDiagonalQuadrature{T<:Real,M} <: TensorMapping{T,1,1}
+    h_inv::T
+    closure::NTuple{M,T}
+    size::Tuple{Int}
+end
+export InverseDiagonalQuadrature
+
+"""
+    InverseDiagonalQuadrature(g, quadrature_closure)
+
+Constructs the `InverseDiagonalQuadrature` on the `EquidistantGrid` `g` with
+closure given by the reciprocal of `quadrature_closure`.
+"""
+function InverseDiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure)
+    return InverseDiagonalQuadrature(inverse_spacing(g)[1], 1 ./ quadrature_closure, size(g))
+end
+
+"""
+    domain_size(Hi::InverseDiagonalQuadrature)
+
+The size of an object in the range of `Hi`
+"""
+LazyTensors.range_size(Hi::InverseDiagonalQuadrature) = Hi.size
+
+"""
+    domain_size(Hi::InverseDiagonalQuadrature)
+
+The size of an object in the domain of `Hi`
+"""
+LazyTensors.domain_size(Hi::InverseDiagonalQuadrature) = Hi.size
+
+"""
+    apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T
+Implements the application `(Hi*v)[i]` an `Index{R}` where `R` is one of the regions
+`Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first
+be converted to an `Index{R}`.
+"""
+function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T
+    return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)]
+end
+
+function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Upper}) where T
+    N = length(v);
+    return @inbounds Hi.h_inv*Hi.closure[N-Int(i)+1]*v[Int(i)]
+end
+
+function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T
+    return @inbounds Hi.h_inv*v[Int(i)]
+end
+
+function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T},  v::AbstractVector{T}, i) where T
+    N = length(v);
+    r = getregion(i, closure_size(Hi), N)
+    return LazyTensors.apply(Hi, v, Index(i, r))
+end
+
+LazyTensors.apply_transpose(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(Hi,v,i)
+
+"""
+    closure_size(Hi)
+Returns the size of the closure stencil of a InverseDiagonalQuadrature `Hi`.
+"""
+closure_size(Hi::InverseDiagonalQuadrature{T,M}) where {T,M} =  M