Mercurial > repos > public > sbplib_julia
changeset 636:a1dfaf305f41 feature/volume_and_boundary_operators
Move SbpOpertors/quadrature to SbpOperators/volumeops/
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 01 Jan 2021 16:45:48 +0100 |
parents | fb5ac62563aa |
children | 4a81812150f4 |
files | src/SbpOperators/SbpOperators.jl src/SbpOperators/quadrature/diagonal_quadrature.jl src/SbpOperators/quadrature/inverse_diagonal_quadrature.jl src/SbpOperators/volumeops/quadratures/diagonal_quadrature.jl src/SbpOperators/volumeops/quadratures/inverse_diagonal_quadrature.jl |
diffstat | 5 files changed, 183 insertions(+), 183 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/SbpOperators.jl Fri Jan 01 16:39:57 2021 +0100 +++ b/src/SbpOperators/SbpOperators.jl Fri Jan 01 16:45:48 2021 +0100 @@ -11,8 +11,8 @@ include("volumeops/volume_operator.jl") include("volumeops/derivatives/secondderivative.jl") include("volumeops/laplace/laplace.jl") -include("quadrature/diagonal_quadrature.jl") -include("quadrature/inverse_diagonal_quadrature.jl") +include("volumeops/quadratures/diagonal_quadrature.jl") +include("volumeops/quadratures/inverse_diagonal_quadrature.jl") include("boundaryops/boundary_operator.jl") include("boundaryops/boundary_restriction.jl") include("boundaryops/normal_derivative.jl")
--- a/src/SbpOperators/quadrature/diagonal_quadrature.jl Fri Jan 01 16:39:57 2021 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,92 +0,0 @@ -""" -diagonal_quadrature(g,quadrature_closure) - -Constructs the diagonal quadrature operator `H` on a grid of `Dim` dimensions as -a `TensorMapping`. The one-dimensional operator is a `DiagonalQuadrature`, while -the multi-dimensional operator is the outer-product of the -one-dimensional operators in each coordinate direction. -""" -function diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim - H = DiagonalQuadrature(restrict(g,1), quadrature_closure) - for i ∈ 2:Dim - H = H⊗DiagonalQuadrature(restrict(g,i), quadrature_closure) - end - return H -end -export diagonal_quadrature - -""" - DiagonalQuadrature{T,M} <: TensorMapping{T,1,1} - -Implements the one-dimensional diagonal quadrature operator as a `TensorMapping` -The quadrature is defined by the quadrature interval length `h`, the quadrature -closure weights `closure` and the number of quadrature intervals `size`. The -interior stencil has the weight 1. -""" -struct DiagonalQuadrature{T,M} <: TensorMapping{T,1,1} - h::T - closure::NTuple{M,T} - size::Tuple{Int} -end -export DiagonalQuadrature - -""" - DiagonalQuadrature(g, quadrature_closure) - -Constructs the `DiagonalQuadrature` on the `EquidistantGrid` `g` with -closure given by `quadrature_closure`. -""" -function DiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure) - return DiagonalQuadrature(spacing(g)[1], quadrature_closure, size(g)) -end - -""" - range_size(H::DiagonalQuadrature) - -The size of an object in the range of `H` -""" -LazyTensors.range_size(H::DiagonalQuadrature) = H.size - -""" - domain_size(H::DiagonalQuadrature) - -The size of an object in the domain of `H` -""" -LazyTensors.domain_size(H::DiagonalQuadrature) = H.size - -""" - apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T -Implements the application `(H*v)[i]` an `Index{R}` where `R` is one of the regions -`Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first -be converted to an `Index{R}`. -""" -function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T - return @inbounds H.h*H.closure[Int(i)]*v[Int(i)] -end - -function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, i::Index{Upper}) where T - N = length(v); #TODO: Use dim_size here? - return @inbounds H.h*H.closure[N-Int(i)+1]*v[Int(i)] -end - -function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T - return @inbounds H.h*v[Int(i)] -end - -function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T - N = length(v); #TODO: Use dim_size here? - r = getregion(i, closure_size(H), N) - return LazyTensors.apply(H, v, Index(i, r)) -end - -""" - apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T -Implements the application (H'*v)[I]. The operator is self-adjoint. -""" -LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i) - -""" - closure_size(H) -Returns the size of the closure stencil of a DiagonalQuadrature `H`. -""" -closure_size(H::DiagonalQuadrature{T,M}) where {T,M} = M
--- a/src/SbpOperators/quadrature/inverse_diagonal_quadrature.jl Fri Jan 01 16:39:57 2021 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,89 +0,0 @@ -""" -inverse_diagonal_quadrature(g,quadrature_closure) - -Constructs the inverse `Hi` of a `DiagonalQuadrature` on a grid of `Dim` dimensions as -a `TensorMapping`. The one-dimensional operator is a `InverseDiagonalQuadrature`, while -the multi-dimensional operator is the outer-product of the one-dimensional operators -in each coordinate direction. -""" -function inverse_diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim - Hi = InverseDiagonalQuadrature(restrict(g,1), quadrature_closure) - for i ∈ 2:Dim - Hi = Hi⊗InverseDiagonalQuadrature(restrict(g,i), quadrature_closure) - end - return Hi -end -export inverse_diagonal_quadrature - - -""" - InverseDiagonalQuadrature{T,M} <: TensorMapping{T,1,1} - -Implements the inverse of a one-dimensional `DiagonalQuadrature` as a `TensorMapping` -The operator is defined by the reciprocal of the quadrature interval length `h_inv`, the -reciprocal of the quadrature closure weights `closure` and the number of quadrature intervals `size`. The -interior stencil has the weight 1. -""" -struct InverseDiagonalQuadrature{T<:Real,M} <: TensorMapping{T,1,1} - h_inv::T - closure::NTuple{M,T} - size::Tuple{Int} -end -export InverseDiagonalQuadrature - -""" - InverseDiagonalQuadrature(g, quadrature_closure) - -Constructs the `InverseDiagonalQuadrature` on the `EquidistantGrid` `g` with -closure given by the reciprocal of `quadrature_closure`. -""" -function InverseDiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure) - return InverseDiagonalQuadrature(inverse_spacing(g)[1], 1 ./ quadrature_closure, size(g)) -end - -""" - domain_size(Hi::InverseDiagonalQuadrature) - -The size of an object in the range of `Hi` -""" -LazyTensors.range_size(Hi::InverseDiagonalQuadrature) = Hi.size - -""" - domain_size(Hi::InverseDiagonalQuadrature) - -The size of an object in the domain of `Hi` -""" -LazyTensors.domain_size(Hi::InverseDiagonalQuadrature) = Hi.size - -""" - apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T -Implements the application `(Hi*v)[i]` an `Index{R}` where `R` is one of the regions -`Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first -be converted to an `Index{R}`. -""" -function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T - return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)] -end - -function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Upper}) where T - N = length(v); - return @inbounds Hi.h_inv*Hi.closure[N-Int(i)+1]*v[Int(i)] -end - -function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T - return @inbounds Hi.h_inv*v[Int(i)] -end - -function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T - N = length(v); - r = getregion(i, closure_size(Hi), N) - return LazyTensors.apply(Hi, v, Index(i, r)) -end - -LazyTensors.apply_transpose(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(Hi,v,i) - -""" - closure_size(Hi) -Returns the size of the closure stencil of a InverseDiagonalQuadrature `Hi`. -""" -closure_size(Hi::InverseDiagonalQuadrature{T,M}) where {T,M} = M
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/SbpOperators/volumeops/quadratures/diagonal_quadrature.jl Fri Jan 01 16:45:48 2021 +0100 @@ -0,0 +1,92 @@ +""" +diagonal_quadrature(g,quadrature_closure) + +Constructs the diagonal quadrature operator `H` on a grid of `Dim` dimensions as +a `TensorMapping`. The one-dimensional operator is a `DiagonalQuadrature`, while +the multi-dimensional operator is the outer-product of the +one-dimensional operators in each coordinate direction. +""" +function diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim + H = DiagonalQuadrature(restrict(g,1), quadrature_closure) + for i ∈ 2:Dim + H = H⊗DiagonalQuadrature(restrict(g,i), quadrature_closure) + end + return H +end +export diagonal_quadrature + +""" + DiagonalQuadrature{T,M} <: TensorMapping{T,1,1} + +Implements the one-dimensional diagonal quadrature operator as a `TensorMapping` +The quadrature is defined by the quadrature interval length `h`, the quadrature +closure weights `closure` and the number of quadrature intervals `size`. The +interior stencil has the weight 1. +""" +struct DiagonalQuadrature{T,M} <: TensorMapping{T,1,1} + h::T + closure::NTuple{M,T} + size::Tuple{Int} +end +export DiagonalQuadrature + +""" + DiagonalQuadrature(g, quadrature_closure) + +Constructs the `DiagonalQuadrature` on the `EquidistantGrid` `g` with +closure given by `quadrature_closure`. +""" +function DiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure) + return DiagonalQuadrature(spacing(g)[1], quadrature_closure, size(g)) +end + +""" + range_size(H::DiagonalQuadrature) + +The size of an object in the range of `H` +""" +LazyTensors.range_size(H::DiagonalQuadrature) = H.size + +""" + domain_size(H::DiagonalQuadrature) + +The size of an object in the domain of `H` +""" +LazyTensors.domain_size(H::DiagonalQuadrature) = H.size + +""" + apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T +Implements the application `(H*v)[i]` an `Index{R}` where `R` is one of the regions +`Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first +be converted to an `Index{R}`. +""" +function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds H.h*H.closure[Int(i)]*v[Int(i)] +end + +function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, i::Index{Upper}) where T + N = length(v); #TODO: Use dim_size here? + return @inbounds H.h*H.closure[N-Int(i)+1]*v[Int(i)] +end + +function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T + return @inbounds H.h*v[Int(i)] +end + +function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T + N = length(v); #TODO: Use dim_size here? + r = getregion(i, closure_size(H), N) + return LazyTensors.apply(H, v, Index(i, r)) +end + +""" + apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T +Implements the application (H'*v)[I]. The operator is self-adjoint. +""" +LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i) + +""" + closure_size(H) +Returns the size of the closure stencil of a DiagonalQuadrature `H`. +""" +closure_size(H::DiagonalQuadrature{T,M}) where {T,M} = M
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/SbpOperators/volumeops/quadratures/inverse_diagonal_quadrature.jl Fri Jan 01 16:45:48 2021 +0100 @@ -0,0 +1,89 @@ +""" +inverse_diagonal_quadrature(g,quadrature_closure) + +Constructs the inverse `Hi` of a `DiagonalQuadrature` on a grid of `Dim` dimensions as +a `TensorMapping`. The one-dimensional operator is a `InverseDiagonalQuadrature`, while +the multi-dimensional operator is the outer-product of the one-dimensional operators +in each coordinate direction. +""" +function inverse_diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim + Hi = InverseDiagonalQuadrature(restrict(g,1), quadrature_closure) + for i ∈ 2:Dim + Hi = Hi⊗InverseDiagonalQuadrature(restrict(g,i), quadrature_closure) + end + return Hi +end +export inverse_diagonal_quadrature + + +""" + InverseDiagonalQuadrature{T,M} <: TensorMapping{T,1,1} + +Implements the inverse of a one-dimensional `DiagonalQuadrature` as a `TensorMapping` +The operator is defined by the reciprocal of the quadrature interval length `h_inv`, the +reciprocal of the quadrature closure weights `closure` and the number of quadrature intervals `size`. The +interior stencil has the weight 1. +""" +struct InverseDiagonalQuadrature{T<:Real,M} <: TensorMapping{T,1,1} + h_inv::T + closure::NTuple{M,T} + size::Tuple{Int} +end +export InverseDiagonalQuadrature + +""" + InverseDiagonalQuadrature(g, quadrature_closure) + +Constructs the `InverseDiagonalQuadrature` on the `EquidistantGrid` `g` with +closure given by the reciprocal of `quadrature_closure`. +""" +function InverseDiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure) + return InverseDiagonalQuadrature(inverse_spacing(g)[1], 1 ./ quadrature_closure, size(g)) +end + +""" + domain_size(Hi::InverseDiagonalQuadrature) + +The size of an object in the range of `Hi` +""" +LazyTensors.range_size(Hi::InverseDiagonalQuadrature) = Hi.size + +""" + domain_size(Hi::InverseDiagonalQuadrature) + +The size of an object in the domain of `Hi` +""" +LazyTensors.domain_size(Hi::InverseDiagonalQuadrature) = Hi.size + +""" + apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T +Implements the application `(Hi*v)[i]` an `Index{R}` where `R` is one of the regions +`Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first +be converted to an `Index{R}`. +""" +function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)] +end + +function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Upper}) where T + N = length(v); + return @inbounds Hi.h_inv*Hi.closure[N-Int(i)+1]*v[Int(i)] +end + +function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T + return @inbounds Hi.h_inv*v[Int(i)] +end + +function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T + N = length(v); + r = getregion(i, closure_size(Hi), N) + return LazyTensors.apply(Hi, v, Index(i, r)) +end + +LazyTensors.apply_transpose(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(Hi,v,i) + +""" + closure_size(Hi) +Returns the size of the closure stencil of a InverseDiagonalQuadrature `Hi`. +""" +closure_size(Hi::InverseDiagonalQuadrature{T,M}) where {T,M} = M