Mercurial > repos > public > sbplib_julia
diff test/SbpOperators/boundaryops/normal_derivative_test.jl @ 1858:4a9be96f2569 feature/documenter_logo
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sun, 12 Jan 2025 21:18:44 +0100 |
parents | 471a948cd2b2 |
children | f3d7e2d7a43f |
line wrap: on
line diff
--- a/test/SbpOperators/boundaryops/normal_derivative_test.jl Fri Jan 21 15:23:08 2022 +0100 +++ b/test/SbpOperators/boundaryops/normal_derivative_test.jl Sun Jan 12 21:18:44 2025 +0100 @@ -1,68 +1,59 @@ using Test -using Sbplib.SbpOperators -using Sbplib.Grids -using Sbplib.RegionIndices -using Sbplib.LazyTensors - -import Sbplib.SbpOperators.BoundaryOperator +using Diffinitive.SbpOperators +using Diffinitive.Grids +using Diffinitive.LazyTensors +using Diffinitive.RegionIndices +import Diffinitive.SbpOperators.BoundaryOperator @testset "normal_derivative" begin - g_1D = EquidistantGrid(11, 0.0, 1.0) - g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) + g_1D = equidistant_grid(0.0, 1.0, 11) + g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12) @testset "normal_derivative" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) - d_closure = parse_stencil(stencil_set["d1"]["closure"]) @testset "1D" begin - d_l = normal_derivative(g_1D, d_closure, Lower()) - @test d_l == normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) - @test d_l isa BoundaryOperator{T,Lower} where T - @test d_l isa TensorMapping{T,0,1} where T + d_l = normal_derivative(g_1D, stencil_set, LowerBoundary()) + @test d_l == normal_derivative(g_1D, stencil_set, LowerBoundary()) + @test d_l isa BoundaryOperator{T,LowerBoundary} where T + @test d_l isa LazyTensor{T,0,1} where T end @testset "2D" begin - d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) - d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) - Ix = IdentityMapping{Float64}((size(g_2D)[1],)) - Iy = IdentityMapping{Float64}((size(g_2D)[2],)) - d_l = normal_derivative(restrict(g_2D,1),d_closure,Lower()) - d_r = normal_derivative(restrict(g_2D,2),d_closure,Upper()) + d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,LowerBoundary}()) + d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,UpperBoundary}()) + Ix = IdentityTensor{Float64}((size(g_2D)[1],)) + Iy = IdentityTensor{Float64}((size(g_2D)[2],)) + d_l = normal_derivative(g_2D.grids[1], stencil_set, LowerBoundary()) + d_r = normal_derivative(g_2D.grids[2], stencil_set, UpperBoundary()) + @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,LowerBoundary}()) @test d_w == d_l⊗Iy @test d_n == Ix⊗d_r - @test d_w isa TensorMapping{T,1,2} where T - @test d_n isa TensorMapping{T,1,2} where T + @test d_w isa LazyTensor{T,1,2} where T + @test d_n isa LazyTensor{T,1,2} where T end end @testset "Accuracy" begin - v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) - v∂x = evalOn(g_2D, (x,y)-> 2*x + y) - v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) + v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) + v∂x = eval_on(g_2D, (x,y)-> 2*x + y) + v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x) # TODO: Test for higher order polynomials? @testset "2nd order" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) - d_closure = parse_stencil(stencil_set["d1"]["closure"]) - d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) - d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) - d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) - d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) + d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) - @test d_w*v ≈ v∂x[1,:] atol = 1e-13 - @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 - @test d_s*v ≈ v∂y[:,1] atol = 1e-13 - @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 + @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 + @test d_e*v ≈ v∂x[end,:] atol = 1e-13 + @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 + @test d_n*v ≈ v∂y[:,end] atol = 1e-13 end @testset "4th order" begin - stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) - d_closure = parse_stencil(stencil_set["d1"]["closure"]) - d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) - d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) - d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) - d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) - - @test d_w*v ≈ v∂x[1,:] atol = 1e-13 - @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 - @test d_s*v ≈ v∂y[:,1] atol = 1e-13 - @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) + + @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 + @test d_e*v ≈ v∂x[end,:] atol = 1e-13 + @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 + @test d_n*v ≈ v∂y[:,end] atol = 1e-13 end end end