comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 1858:4a9be96f2569 feature/documenter_logo

Merge default
author Jonatan Werpers <jonatan@werpers.com>
date Sun, 12 Jan 2025 21:18:44 +0100
parents 471a948cd2b2
children f3d7e2d7a43f
comparison
equal deleted inserted replaced
1857:ffde7dad9da5 1858:4a9be96f2569
1 using Test 1 using Test
2 2
3 using Sbplib.SbpOperators 3 using Diffinitive.SbpOperators
4 using Sbplib.Grids 4 using Diffinitive.Grids
5 using Sbplib.RegionIndices 5 using Diffinitive.LazyTensors
6 using Sbplib.LazyTensors 6 using Diffinitive.RegionIndices
7 7 import Diffinitive.SbpOperators.BoundaryOperator
8 import Sbplib.SbpOperators.BoundaryOperator
9 8
10 @testset "normal_derivative" begin 9 @testset "normal_derivative" begin
11 g_1D = EquidistantGrid(11, 0.0, 1.0) 10 g_1D = equidistant_grid(0.0, 1.0, 11)
12 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) 11 g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12)
13 @testset "normal_derivative" begin 12 @testset "normal_derivative" begin
14 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) 13 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
15 d_closure = parse_stencil(stencil_set["d1"]["closure"])
16 @testset "1D" begin 14 @testset "1D" begin
17 d_l = normal_derivative(g_1D, d_closure, Lower()) 15 d_l = normal_derivative(g_1D, stencil_set, LowerBoundary())
18 @test d_l == normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) 16 @test d_l == normal_derivative(g_1D, stencil_set, LowerBoundary())
19 @test d_l isa BoundaryOperator{T,Lower} where T 17 @test d_l isa BoundaryOperator{T,LowerBoundary} where T
20 @test d_l isa TensorMapping{T,0,1} where T 18 @test d_l isa LazyTensor{T,0,1} where T
21 end 19 end
22 @testset "2D" begin 20 @testset "2D" begin
23 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) 21 d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,LowerBoundary}())
24 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) 22 d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,UpperBoundary}())
25 Ix = IdentityMapping{Float64}((size(g_2D)[1],)) 23 Ix = IdentityTensor{Float64}((size(g_2D)[1],))
26 Iy = IdentityMapping{Float64}((size(g_2D)[2],)) 24 Iy = IdentityTensor{Float64}((size(g_2D)[2],))
27 d_l = normal_derivative(restrict(g_2D,1),d_closure,Lower()) 25 d_l = normal_derivative(g_2D.grids[1], stencil_set, LowerBoundary())
28 d_r = normal_derivative(restrict(g_2D,2),d_closure,Upper()) 26 d_r = normal_derivative(g_2D.grids[2], stencil_set, UpperBoundary())
27 @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,LowerBoundary}())
29 @test d_w == d_l⊗Iy 28 @test d_w == d_l⊗Iy
30 @test d_n == Ix⊗d_r 29 @test d_n == Ix⊗d_r
31 @test d_w isa TensorMapping{T,1,2} where T 30 @test d_w isa LazyTensor{T,1,2} where T
32 @test d_n isa TensorMapping{T,1,2} where T 31 @test d_n isa LazyTensor{T,1,2} where T
33 end 32 end
34 end 33 end
35 @testset "Accuracy" begin 34 @testset "Accuracy" begin
36 v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) 35 v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y)
37 v∂x = evalOn(g_2D, (x,y)-> 2*x + y) 36 v∂x = eval_on(g_2D, (x,y)-> 2*x + y)
38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) 37 v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x)
39 # TODO: Test for higher order polynomials? 38 # TODO: Test for higher order polynomials?
40 @testset "2nd order" begin 39 @testset "2nd order" begin
41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) 40 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
42 d_closure = parse_stencil(stencil_set["d1"]["closure"]) 41 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D))
43 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}())
44 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}())
45 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}())
46 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}())
47 42
48 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 43 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
49 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 44 @test d_e*v ≈ v∂x[end,:] atol = 1e-13
50 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 45 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
51 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 46 @test d_n*v ≈ v∂y[:,end] atol = 1e-13
52 end 47 end
53 48
54 @testset "4th order" begin 49 @testset "4th order" begin
55 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) 50 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
56 d_closure = parse_stencil(stencil_set["d1"]["closure"]) 51 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D))
57 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) 52
58 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) 53 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
59 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) 54 @test d_e*v ≈ v∂x[end,:] atol = 1e-13
60 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) 55 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
61 56 @test d_n*v ≈ v∂y[:,end] atol = 1e-13
62 @test d_w*v ≈ v∂x[1,:] atol = 1e-13
63 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13
64 @test d_s*v ≈ v∂y[:,1] atol = 1e-13
65 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13
66 end 57 end
67 end 58 end
68 end 59 end