Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/volumeops/laplace/laplace.jl @ 1602:3e7438e2a033 feature/boundary_conditions
Address review comments (1 left to be discussed)
author | Vidar Stiernström <vidar.stiernstrom@gmail.com> |
---|---|
date | Sat, 01 Jun 2024 17:39:54 -0700 |
parents | b2496b001297 |
children | fca4a01d60c9 |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Wed May 29 23:28:33 2024 +0200 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Sat Jun 01 17:39:54 2024 -0700 @@ -53,28 +53,26 @@ end laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) -# REVIEW: I think the handling of tuning parameters below should be through kwargs instead. """ -sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) +sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; tuning) The operators required to construct the SAT for imposing a Dirichlet condition. `tuning` specifies the strength of the penalty. See See also: [`sat`,`DirichletCondition`, `positivity_decomposition`](@ref). """ -function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) - id = bc.id +function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; tuning = (1., 1.)) + id = boundary(bc) set = Δ.stencil_set H⁻¹ = inverse_inner_product(g,set) Hᵧ = inner_product(boundary_grid(g, id), set) e = boundary_restriction(g, set, id) d = normal_derivative(g, set, id) B = positivity_decomposition(Δ, g, bc, tuning) - sat_op = H⁻¹∘(d' - B*e')∘Hᵧ - return sat_op, e + penalty_tensor = H⁻¹∘(d' - B*e')∘Hᵧ + return penalty_tensor, e end -BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition) = BoundaryConditions.sat_tensors(Δ, g, bc, (1.,1.)) # REVIEW: Should be possible to replace this with argument default values. """ sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) @@ -85,21 +83,23 @@ See also: [`sat`,`NeumannCondition`](@ref). """ function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) - id = bc.id + id = boundary(bc) set = Δ.stencil_set H⁻¹ = inverse_inner_product(g,set) Hᵧ = inner_product(boundary_grid(g, id), set) e = boundary_restriction(g, set, id) d = normal_derivative(g, set, id) - sat_op = -H⁻¹∘e'∘Hᵧ - return sat_op, d + penalty_tensor = -H⁻¹∘e'∘Hᵧ + return penalty_tensor, d end -# REVIEW: This function assumes a TensorGrid right? In that case there should probably be a type annotation to get clearer error messages. -function positivity_decomposition(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) +# TODO: We should consider implementing a proper BoundaryIdentifier for EquidistantGrid and then +# change bc::BoundaryCondition to id::BoundaryIdentifier + +function positivity_decomposition(Δ::Laplace, g::EquidistantGrid, bc::BoundaryCondition, tuning) pos_prop = positivity_properties(Δ) - h = spacing(orthogonal_grid(g, bc.id)) + h = spacing(g) θ_H = pos_prop.theta_H τ_H = tuning[1]*ndims(g)/(h*θ_H) θ_R = pos_prop.theta_R @@ -108,4 +108,19 @@ return B end -positivity_properties(Δ::Laplace) = parse_named_tuple(Δ.stencil_set["Positivity"]["D2"]) # REVIEW: Can this function extract theta_H from the inner product instead of storing it twice in the TOML? +function positivity_decomposition(Δ::Laplace, g::TensorGrid, bc::BoundaryCondition, tuning) + pos_prop = positivity_properties(Δ) + h = spacing(g.grids[grid_id(boundary(bc))]) # grid spacing of the 1D grid normal to the boundary + θ_H = pos_prop.theta_H + τ_H = tuning[1]*ndims(g)/(h*θ_H) + θ_R = pos_prop.theta_R + τ_R = tuning[2]/(h*θ_R) + B = τ_H + τ_R + return B +end + +function positivity_properties(Δ::Laplace) + D2_pos_prop = parse_named_tuple(Δ.stencil_set["D2"]["positivity"]) + H_closure = parse_tuple(Δ.stencil_set["H"]["closure"]) + return merge(D2_pos_prop, (theta_H = H_closure[1],)) +end