Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1602:3e7438e2a033 feature/boundary_conditions
Address review comments (1 left to be discussed)
author | Vidar Stiernström <vidar.stiernstrom@gmail.com> |
---|---|
date | Sat, 01 Jun 2024 17:39:54 -0700 |
parents | b2496b001297 |
children | fca4a01d60c9 |
comparison
equal
deleted
inserted
replaced
1601:fad18896d20a | 1602:3e7438e2a033 |
---|---|
51 end | 51 end |
52 return Δ | 52 return Δ |
53 end | 53 end |
54 laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) | 54 laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) |
55 | 55 |
56 # REVIEW: I think the handling of tuning parameters below should be through kwargs instead. | |
57 | 56 |
58 """ | 57 """ |
59 sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) | 58 sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; tuning) |
60 | 59 |
61 The operators required to construct the SAT for imposing a Dirichlet condition. | 60 The operators required to construct the SAT for imposing a Dirichlet condition. |
62 `tuning` specifies the strength of the penalty. See | 61 `tuning` specifies the strength of the penalty. See |
63 | 62 |
64 See also: [`sat`,`DirichletCondition`, `positivity_decomposition`](@ref). | 63 See also: [`sat`,`DirichletCondition`, `positivity_decomposition`](@ref). |
65 """ | 64 """ |
66 function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) | 65 function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; tuning = (1., 1.)) |
67 id = bc.id | 66 id = boundary(bc) |
68 set = Δ.stencil_set | 67 set = Δ.stencil_set |
69 H⁻¹ = inverse_inner_product(g,set) | 68 H⁻¹ = inverse_inner_product(g,set) |
70 Hᵧ = inner_product(boundary_grid(g, id), set) | 69 Hᵧ = inner_product(boundary_grid(g, id), set) |
71 e = boundary_restriction(g, set, id) | 70 e = boundary_restriction(g, set, id) |
72 d = normal_derivative(g, set, id) | 71 d = normal_derivative(g, set, id) |
73 B = positivity_decomposition(Δ, g, bc, tuning) | 72 B = positivity_decomposition(Δ, g, bc, tuning) |
74 sat_op = H⁻¹∘(d' - B*e')∘Hᵧ | 73 penalty_tensor = H⁻¹∘(d' - B*e')∘Hᵧ |
75 return sat_op, e | 74 return penalty_tensor, e |
76 end | 75 end |
77 BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition) = BoundaryConditions.sat_tensors(Δ, g, bc, (1.,1.)) # REVIEW: Should be possible to replace this with argument default values. | |
78 | 76 |
79 """ | 77 """ |
80 sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) | 78 sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) |
81 | 79 |
82 The operators required to construct the SAT for imposing a Neumann condition | 80 The operators required to construct the SAT for imposing a Neumann condition |
83 | 81 |
84 | 82 |
85 See also: [`sat`,`NeumannCondition`](@ref). | 83 See also: [`sat`,`NeumannCondition`](@ref). |
86 """ | 84 """ |
87 function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) | 85 function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) |
88 id = bc.id | 86 id = boundary(bc) |
89 set = Δ.stencil_set | 87 set = Δ.stencil_set |
90 H⁻¹ = inverse_inner_product(g,set) | 88 H⁻¹ = inverse_inner_product(g,set) |
91 Hᵧ = inner_product(boundary_grid(g, id), set) | 89 Hᵧ = inner_product(boundary_grid(g, id), set) |
92 e = boundary_restriction(g, set, id) | 90 e = boundary_restriction(g, set, id) |
93 d = normal_derivative(g, set, id) | 91 d = normal_derivative(g, set, id) |
94 | 92 |
95 sat_op = -H⁻¹∘e'∘Hᵧ | 93 penalty_tensor = -H⁻¹∘e'∘Hᵧ |
96 return sat_op, d | 94 return penalty_tensor, d |
97 end | 95 end |
98 | 96 |
99 # REVIEW: This function assumes a TensorGrid right? In that case there should probably be a type annotation to get clearer error messages. | 97 # TODO: We should consider implementing a proper BoundaryIdentifier for EquidistantGrid and then |
100 function positivity_decomposition(Δ::Laplace, g::Grid, bc::DirichletCondition, tuning) | 98 # change bc::BoundaryCondition to id::BoundaryIdentifier |
99 | |
100 function positivity_decomposition(Δ::Laplace, g::EquidistantGrid, bc::BoundaryCondition, tuning) | |
101 pos_prop = positivity_properties(Δ) | 101 pos_prop = positivity_properties(Δ) |
102 h = spacing(orthogonal_grid(g, bc.id)) | 102 h = spacing(g) |
103 θ_H = pos_prop.theta_H | 103 θ_H = pos_prop.theta_H |
104 τ_H = tuning[1]*ndims(g)/(h*θ_H) | 104 τ_H = tuning[1]*ndims(g)/(h*θ_H) |
105 θ_R = pos_prop.theta_R | 105 θ_R = pos_prop.theta_R |
106 τ_R = tuning[2]/(h*θ_R) | 106 τ_R = tuning[2]/(h*θ_R) |
107 B = τ_H + τ_R | 107 B = τ_H + τ_R |
108 return B | 108 return B |
109 end | 109 end |
110 | 110 |
111 positivity_properties(Δ::Laplace) = parse_named_tuple(Δ.stencil_set["Positivity"]["D2"]) # REVIEW: Can this function extract theta_H from the inner product instead of storing it twice in the TOML? | 111 function positivity_decomposition(Δ::Laplace, g::TensorGrid, bc::BoundaryCondition, tuning) |
112 pos_prop = positivity_properties(Δ) | |
113 h = spacing(g.grids[grid_id(boundary(bc))]) # grid spacing of the 1D grid normal to the boundary | |
114 θ_H = pos_prop.theta_H | |
115 τ_H = tuning[1]*ndims(g)/(h*θ_H) | |
116 θ_R = pos_prop.theta_R | |
117 τ_R = tuning[2]/(h*θ_R) | |
118 B = τ_H + τ_R | |
119 return B | |
120 end | |
121 | |
122 function positivity_properties(Δ::Laplace) | |
123 D2_pos_prop = parse_named_tuple(Δ.stencil_set["D2"]["positivity"]) | |
124 H_closure = parse_tuple(Δ.stencil_set["H"]["closure"]) | |
125 return merge(D2_pos_prop, (theta_H = H_closure[1],)) | |
126 end |