Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1395:bdcdbd4ea9cd feature/boundary_conditions
Merge with default. Comment out broken tests for boundary_conditions at sat
| author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
|---|---|
| date | Wed, 26 Jul 2023 21:35:50 +0200 |
| parents | 470a70a6c1e6 08f06bfacd5c |
| children | 35840a0681d1 |
comparison
equal
deleted
inserted
replaced
| 1217:ea2e8254820a | 1395:bdcdbd4ea9cd |
|---|---|
| 1 """ | 1 """ |
| 2 Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} | 2 Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} |
| 3 | 3 |
| 4 Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a | 4 The Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a |
| 5 `LazyTensor`. Additionally `Laplace` stores the `StencilSet` | 5 `LazyTensor`. |
| 6 used to construct the `LazyTensor `. | |
| 7 """ | 6 """ |
| 8 struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} | 7 struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} |
| 9 D::TM # Difference operator | 8 D::TM # Difference operator |
| 10 stencil_set::StencilSet # Stencil set of the operator | 9 stencil_set::StencilSet # Stencil set of the operator |
| 11 end | 10 end |
| 12 | 11 |
| 13 """ | 12 """ |
| 14 Laplace(grid::Equidistant, stencil_set) | 13 Laplace(g::Grid, stencil_set::StencilSet) |
| 15 | 14 |
| 16 Creates the `Laplace` operator `Δ` on `grid` given a `stencil_set`. | 15 Creates the `Laplace` operator `Δ` on `g` given `stencil_set`. |
| 17 | 16 |
| 18 See also [`laplace`](@ref). | 17 See also [`laplace`](@ref). |
| 19 """ | 18 """ |
| 20 function Laplace(grid::EquidistantGrid, stencil_set::StencilSet) | 19 function Laplace(g::Grid, stencil_set::StencilSet) |
| 21 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | 20 Δ = laplace(g, stencil_set) |
| 22 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | 21 return Laplace(Δ, stencil_set) |
| 23 Δ = laplace(grid, inner_stencil,closure_stencils) | |
| 24 return Laplace(Δ,stencil_set) | |
| 25 end | 22 end |
| 26 | 23 |
| 27 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) | 24 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) |
| 28 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) | 25 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) |
| 29 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) | 26 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) |
| 30 | 27 |
| 31 # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. | 28 # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. |
| 32 # Base.show(io::IO, L::Laplace) = ... | 29 # Base.show(io::IO, L::Laplace) = ... |
| 33 | 30 |
| 34 """ | 31 """ |
| 35 laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) | 32 laplace(g::Grid, stencil_set) |
| 36 | 33 |
| 37 Creates the Laplace operator operator `Δ` as a `LazyTensor` | 34 Creates the Laplace operator operator `Δ` as a `LazyTensor` on `g`. |
| 38 | 35 |
| 39 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using | 36 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `g`. The |
| 40 the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` | 37 approximation depends on the type of grid and the stencil set. |
| 41 for the points in the closure regions. | |
| 42 | |
| 43 On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a | |
| 44 multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s | |
| 45 where the sum is carried out lazily. | |
| 46 | 38 |
| 47 See also: [`second_derivative`](@ref). | 39 See also: [`second_derivative`](@ref). |
| 48 """ | 40 """ |
| 49 function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) | 41 function laplace end |
| 50 Δ = second_derivative(grid, inner_stencil, closure_stencils, 1) | 42 function laplace(g::TensorGrid, stencil_set) |
| 51 for d = 2:ndims(grid) | 43 # return mapreduce(+, enumerate(g.grids)) do (i, gᵢ) |
| 52 Δ += second_derivative(grid, inner_stencil, closure_stencils, d) | 44 # Δᵢ = laplace(gᵢ, stencil_set) |
| 45 # LazyTensors.inflate(Δᵢ, size(g), i) | |
| 46 # end | |
| 47 | |
| 48 Δ = LazyTensors.inflate(laplace(g.grids[1], stencil_set), size(g), 1) | |
| 49 for d = 2:ndims(g) | |
| 50 Δ += LazyTensors.inflate(laplace(g.grids[d], stencil_set), size(g), d) | |
| 53 end | 51 end |
| 54 return Δ | 52 return Δ |
| 55 end | 53 end |
| 54 laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) | |
| 55 | |
| 56 | 56 |
| 57 """ | 57 """ |
| 58 sat_tensors(Δ::Laplace, g::EquidistantGrid, bc::NeumannCondition) | 58 sat_tensors(Δ::Laplace, g::TensorGrid, bc::NeumannCondition) |
| 59 | 59 |
| 60 Returns anonymous functions for construction the `LazyTensorApplication`s | 60 Returns anonymous functions for construction the `LazyTensorApplication`s |
| 61 recuired in order to impose a Neumann boundary condition. | 61 recuired in order to impose a Neumann boundary condition. |
| 62 | 62 |
| 63 See also: [`sat`,`NeumannCondition`](@ref). | 63 See also: [`sat`,`NeumannCondition`](@ref). |
| 64 """ | 64 """ |
| 65 function BoundaryConditions.sat_tensors(Δ::Laplace, g::EquidistantGrid, bc::NeumannCondition) | 65 function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) |
| 66 id = bc.id | 66 id = bc.id |
| 67 set = Δ.stencil_set | 67 set = Δ.stencil_set |
| 68 H⁻¹ = inverse_inner_product(g,set) | 68 H⁻¹ = inverse_inner_product(g,set) |
| 69 Hᵧ = inner_product(boundary_grid(g, id), set) | 69 Hᵧ = inner_product(boundary_grid(g, id), set) |
| 70 e = boundary_restriction(g, set, id) | 70 e = boundary_restriction(g, set, id) |
| 71 d = normal_derivative(g, set, id) | 71 d = normal_derivative(g, set, id) |
| 72 | 72 |
| 73 closure(u) = H⁻¹*e'*Hᵧ*d*u | 73 closure(u) = H⁻¹*e'*Hᵧ*d*u |
| 74 penalty(g) = -H⁻¹*e'*Hᵧ*g | 74 penalty(g) = -H⁻¹*e'*Hᵧ*g |
| 75 return closure, penalty | 75 return closure, penalty |
| 76 end | 76 end |
