view src/SbpOperators/volumeops/laplace/laplace.jl @ 1136:470a70a6c1e6 feature/boundary_conditions

Reformulate boundary routines (sat tensors) for Laplace and fix export
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Tue, 11 Oct 2022 18:16:42 +0200
parents a8c8517a310f
children bdcdbd4ea9cd
line wrap: on
line source

"""
    Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim}

Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a
`LazyTensor`. Additionally `Laplace` stores the `StencilSet`
used to construct the `LazyTensor `.
"""
struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim}
    D::TM       # Difference operator
    stencil_set::StencilSet # Stencil set of the operator
end

"""
    Laplace(grid::Equidistant, stencil_set)

Creates the `Laplace` operator `Δ` on `grid` given a `stencil_set`. 

See also [`laplace`](@ref).
"""
function Laplace(grid::EquidistantGrid, stencil_set::StencilSet)
    inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"])
    closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
    Δ = laplace(grid, inner_stencil,closure_stencils)
    return Laplace(Δ,stencil_set)
end

LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D)
LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D)
LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...)

# TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented.
# Base.show(io::IO, L::Laplace) = ...

"""
    laplace(grid::EquidistantGrid, inner_stencil, closure_stencils)

Creates the Laplace operator operator `Δ` as a `LazyTensor`

`Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using
the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils`
for the points in the closure regions.

On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a
multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s
where the sum is carried out lazily.

See also: [`second_derivative`](@ref).
"""
function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils)
    Δ = second_derivative(grid, inner_stencil, closure_stencils, 1)
    for d = 2:ndims(grid)
        Δ += second_derivative(grid, inner_stencil, closure_stencils, d)
    end
    return Δ
end

"""
    sat_tensors(Δ::Laplace, g::EquidistantGrid, bc::NeumannCondition)

Returns anonymous functions for construction the `LazyTensorApplication`s
recuired in order to impose a Neumann boundary condition.

See also: [`sat`,`NeumannCondition`](@ref).
"""
function BoundaryConditions.sat_tensors(Δ::Laplace, g::EquidistantGrid, bc::NeumannCondition)
    id = bc.id
    set  = Δ.stencil_set
    H⁻¹ = inverse_inner_product(g,set)
    Hᵧ = inner_product(boundary_grid(g, id), set)
    e = boundary_restriction(g, set, id)
    d = normal_derivative(g, set, id)
    
    closure(u) = H⁻¹*e'*Hᵧ*d*u
    penalty(g) = -H⁻¹*e'*Hᵧ*g
    return closure, penalty
end