Mercurial > repos > public > sbplib_julia
view src/SbpOperators/volumeops/laplace/laplace.jl @ 1136:470a70a6c1e6 feature/boundary_conditions
Reformulate boundary routines (sat tensors) for Laplace and fix export
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 11 Oct 2022 18:16:42 +0200 |
parents | a8c8517a310f |
children | bdcdbd4ea9cd |
line wrap: on
line source
""" Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a `LazyTensor`. Additionally `Laplace` stores the `StencilSet` used to construct the `LazyTensor `. """ struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} D::TM # Difference operator stencil_set::StencilSet # Stencil set of the operator end """ Laplace(grid::Equidistant, stencil_set) Creates the `Laplace` operator `Δ` on `grid` given a `stencil_set`. See also [`laplace`](@ref). """ function Laplace(grid::EquidistantGrid, stencil_set::StencilSet) inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) Δ = laplace(grid, inner_stencil,closure_stencils) return Laplace(Δ,stencil_set) end LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. # Base.show(io::IO, L::Laplace) = ... """ laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) Creates the Laplace operator operator `Δ` as a `LazyTensor` `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` for the points in the closure regions. On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s where the sum is carried out lazily. See also: [`second_derivative`](@ref). """ function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) Δ = second_derivative(grid, inner_stencil, closure_stencils, 1) for d = 2:ndims(grid) Δ += second_derivative(grid, inner_stencil, closure_stencils, d) end return Δ end """ sat_tensors(Δ::Laplace, g::EquidistantGrid, bc::NeumannCondition) Returns anonymous functions for construction the `LazyTensorApplication`s recuired in order to impose a Neumann boundary condition. See also: [`sat`,`NeumannCondition`](@ref). """ function BoundaryConditions.sat_tensors(Δ::Laplace, g::EquidistantGrid, bc::NeumannCondition) id = bc.id set = Δ.stencil_set H⁻¹ = inverse_inner_product(g,set) Hᵧ = inner_product(boundary_grid(g, id), set) e = boundary_restriction(g, set, id) d = normal_derivative(g, set, id) closure(u) = H⁻¹*e'*Hᵧ*d*u penalty(g) = -H⁻¹*e'*Hᵧ*g return closure, penalty end