Mercurial > repos > public > sbplib_julia
view src/SbpOperators/volumeops/laplace/laplace.jl @ 1396:35840a0681d1 feature/boundary_conditions
Start drafting new implemenentation of boundary conditions
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 26 Jul 2023 23:11:02 +0200 |
parents | bdcdbd4ea9cd |
children | 8d60d045c2a2 |
line wrap: on
line source
""" Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} The Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a `LazyTensor`. """ struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} D::TM # Difference operator stencil_set::StencilSet # Stencil set of the operator end """ Laplace(g::Grid, stencil_set::StencilSet) Creates the `Laplace` operator `Δ` on `g` given `stencil_set`. See also [`laplace`](@ref). """ function Laplace(g::Grid, stencil_set::StencilSet) Δ = laplace(g, stencil_set) return Laplace(Δ, stencil_set) end LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. # Base.show(io::IO, L::Laplace) = ... """ laplace(g::Grid, stencil_set) Creates the Laplace operator operator `Δ` as a `LazyTensor` on `g`. `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `g`. The approximation depends on the type of grid and the stencil set. See also: [`second_derivative`](@ref). """ function laplace end function laplace(g::TensorGrid, stencil_set) # return mapreduce(+, enumerate(g.grids)) do (i, gᵢ) # Δᵢ = laplace(gᵢ, stencil_set) # LazyTensors.inflate(Δᵢ, size(g), i) # end Δ = LazyTensors.inflate(laplace(g.grids[1], stencil_set), size(g), 1) for d = 2:ndims(g) Δ += LazyTensors.inflate(laplace(g.grids[d], stencil_set), size(g), d) end return Δ end laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) """ sat_tensors(Δ::Laplace, g::TensorGrid, bc::NeumannCondition) Returns the LazyTensors required to impose a Neumann condition SAT = sat_op(d*u - g) See also: [`sat`,`NeumannCondition`](@ref). """ function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) id = bc.id set = Δ.stencil_set H⁻¹ = inverse_inner_product(g,set) Hᵧ = inner_product(boundary_grid(g, id), set) e = boundary_restriction(g, set, id) d = normal_derivative(g, set, id) sat_tensor = H⁻¹∘e'∘Hᵧ return sat_tensor, d end