Mercurial > repos > public > sbplib_julia
changeset 351:ffddaf053085
Tests in testDiffOps are to be moved to testSbpOperators. Already moved tests are removed, while those not yet moved are commented out.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sun, 27 Sep 2020 15:26:05 +0200 |
parents | 28e71a861531 |
children | e22b061f5299 b99b33946cba 0af6da238d95 |
files | test/testDiffOps.jl |
diffstat | 1 files changed, 188 insertions(+), 263 deletions(-) [+] |
line wrap: on
line diff
--- a/test/testDiffOps.jl Sun Sep 27 13:47:40 2020 +0200 +++ b/test/testDiffOps.jl Sun Sep 27 15:26:05 2020 +0200 @@ -6,268 +6,193 @@ using Sbplib.LazyTensors @testset "DiffOps" begin - -@testset "Laplace2D" begin - op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") - Lx = 3.5 - Ly = 7.2 - g = EquidistantGrid((42,41), (0.0, 0.0), (Lx,Ly)) - L = Laplace(g, 1., op) - H = quadrature(L) - - f0(x::Float64,y::Float64) = 2. - f1(x::Float64,y::Float64) = x+y - f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2 - f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3 - f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4 - f5(x::Float64,y::Float64) = sin(x) + cos(y) - f5ₓₓ(x::Float64,y::Float64) = -f5(x,y) - - v0 = evalOn(g,f0) - v1 = evalOn(g,f1) - v2 = evalOn(g,f2) - v3 = evalOn(g,f3) - v4 = evalOn(g,f4) - v5 = evalOn(g,f5) - v5ₓₓ = evalOn(g,f5ₓₓ) - - @test L isa TensorOperator{T,2} where T - @test L' isa TensorMapping{T,2,2} where T - - # TODO: Should perhaps set tolerance level for isapporx instead? - # Are these tolerance levels resonable or should tests be constructed - # differently? - equalitytol = 0.5*1e-10 - accuracytol = 0.5*1e-3 - # 4th order interior stencil, 2nd order boundary stencil, - # implies that L*v should be exact for v - monomial up to order 3. - # Exact differentiation is measured point-wise. For other grid functions - # the error is measured in the H-norm. - @test all(abs.(collect(L*v0)) .<= equalitytol) - @test all(abs.(collect(L*v1)) .<= equalitytol) - @test all(collect(L*v2) .≈ v0) # Seems to be more accurate - @test all(abs.((collect(L*v3) - v1)) .<= equalitytol) - e4 = collect(L*v4) - v2 - e5 = collect(L*v5) - v5ₓₓ - @test sum(collect(H*e4.^2)) <= accuracytol - @test sum(collect(H*e5.^2)) <= accuracytol -end - -@testset "Quadrature" begin - op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") - Lx = 2.3 - Ly = 5.2 - g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) - H = Quadrature(op,g) - v = ones(Float64, size(g)) - - @test H isa TensorOperator{T,2} where T - @test H' isa TensorMapping{T,2,2} where T - @test sum(collect(H*v)) ≈ (Lx*Ly) - @test collect(H*v) == collect(H'*v) -end - -@testset "InverseQuadrature" begin - op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") - Lx = 7.3 - Ly = 8.2 - g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) - H = Quadrature(op,g) - Hinv = InverseQuadrature(op,g) - v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) - - @test Hinv isa TensorOperator{T,2} where T - @test Hinv' isa TensorMapping{T,2,2} where T - @test collect(Hinv*H*v) ≈ v - @test collect(Hinv*v) == collect(Hinv'*v) -end - -@testset "BoundaryValue" begin - op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") - g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) - - e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) - e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) - e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) - e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) - - v = zeros(Float64, 4, 5) - v[:,5] = [1, 2, 3,4] - v[:,4] = [1, 2, 3,4] - v[:,3] = [4, 5, 6, 7] - v[:,2] = [7, 8, 9, 10] - v[:,1] = [10, 11, 12, 13] - - @test e_w isa TensorMapping{T,2,1} where T - @test e_w' isa TensorMapping{T,1,2} where T - - @test domain_size(e_w, (3,2)) == (2,) - @test domain_size(e_e, (3,2)) == (2,) - @test domain_size(e_s, (3,2)) == (3,) - @test domain_size(e_n, (3,2)) == (3,) - - @test size(e_w'*v) == (5,) - @test size(e_e'*v) == (5,) - @test size(e_s'*v) == (4,) - @test size(e_n'*v) == (4,) - - @test collect(e_w'*v) == [10,7,4,1.0,1] - @test collect(e_e'*v) == [13,10,7,4,4.0] - @test collect(e_s'*v) == [10,11,12,13.0] - @test collect(e_n'*v) == [1,2,3,4.0] - - g_x = [1,2,3,4.0] - g_y = [5,4,3,2,1.0] - - G_w = zeros(Float64, (4,5)) - G_w[1,:] = g_y - - G_e = zeros(Float64, (4,5)) - G_e[4,:] = g_y - - G_s = zeros(Float64, (4,5)) - G_s[:,1] = g_x - - G_n = zeros(Float64, (4,5)) - G_n[:,5] = g_x - - @test size(e_w*g_y) == (UnknownDim,5) - @test size(e_e*g_y) == (UnknownDim,5) - @test size(e_s*g_x) == (4,UnknownDim) - @test size(e_n*g_x) == (4,UnknownDim) +# +# @testset "BoundaryValue" begin +# op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") +# g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) +# +# e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) +# e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) +# e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) +# e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) +# +# v = zeros(Float64, 4, 5) +# v[:,5] = [1, 2, 3,4] +# v[:,4] = [1, 2, 3,4] +# v[:,3] = [4, 5, 6, 7] +# v[:,2] = [7, 8, 9, 10] +# v[:,1] = [10, 11, 12, 13] +# +# @test e_w isa TensorMapping{T,2,1} where T +# @test e_w' isa TensorMapping{T,1,2} where T +# +# @test domain_size(e_w, (3,2)) == (2,) +# @test domain_size(e_e, (3,2)) == (2,) +# @test domain_size(e_s, (3,2)) == (3,) +# @test domain_size(e_n, (3,2)) == (3,) +# +# @test size(e_w'*v) == (5,) +# @test size(e_e'*v) == (5,) +# @test size(e_s'*v) == (4,) +# @test size(e_n'*v) == (4,) +# +# @test collect(e_w'*v) == [10,7,4,1.0,1] +# @test collect(e_e'*v) == [13,10,7,4,4.0] +# @test collect(e_s'*v) == [10,11,12,13.0] +# @test collect(e_n'*v) == [1,2,3,4.0] +# +# g_x = [1,2,3,4.0] +# g_y = [5,4,3,2,1.0] +# +# G_w = zeros(Float64, (4,5)) +# G_w[1,:] = g_y +# +# G_e = zeros(Float64, (4,5)) +# G_e[4,:] = g_y +# +# G_s = zeros(Float64, (4,5)) +# G_s[:,1] = g_x +# +# G_n = zeros(Float64, (4,5)) +# G_n[:,5] = g_x +# +# @test size(e_w*g_y) == (UnknownDim,5) +# @test size(e_e*g_y) == (UnknownDim,5) +# @test size(e_s*g_x) == (4,UnknownDim) +# @test size(e_n*g_x) == (4,UnknownDim) +# +# # These tests should be moved to where they are possible (i.e we know what the grid should be) +# @test_broken collect(e_w*g_y) == G_w +# @test_broken collect(e_e*g_y) == G_e +# @test_broken collect(e_s*g_x) == G_s +# @test_broken collect(e_n*g_x) == G_n +# end +# +# @testset "NormalDerivative" begin +# op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") +# g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) +# +# d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) +# d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) +# d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) +# d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) +# +# +# v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) +# v∂x = evalOn(g, (x,y)-> 2*x + y) +# v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) +# +# @test d_w isa TensorMapping{T,2,1} where T +# @test d_w' isa TensorMapping{T,1,2} where T +# +# @test domain_size(d_w, (3,2)) == (2,) +# @test domain_size(d_e, (3,2)) == (2,) +# @test domain_size(d_s, (3,2)) == (3,) +# @test domain_size(d_n, (3,2)) == (3,) +# +# @test size(d_w'*v) == (6,) +# @test size(d_e'*v) == (6,) +# @test size(d_s'*v) == (5,) +# @test size(d_n'*v) == (5,) +# +# @test collect(d_w'*v) ≈ v∂x[1,:] +# @test collect(d_e'*v) ≈ v∂x[5,:] +# @test collect(d_s'*v) ≈ v∂y[:,1] +# @test collect(d_n'*v) ≈ v∂y[:,6] +# +# +# d_x_l = zeros(Float64, 5) +# d_x_u = zeros(Float64, 5) +# for i ∈ eachindex(d_x_l) +# d_x_l[i] = op.dClosure[i-1] +# d_x_u[i] = -op.dClosure[length(d_x_u)-i] +# end +# +# d_y_l = zeros(Float64, 6) +# d_y_u = zeros(Float64, 6) +# for i ∈ eachindex(d_y_l) +# d_y_l[i] = op.dClosure[i-1] +# d_y_u[i] = -op.dClosure[length(d_y_u)-i] +# end +# +# function prod_matrix(x,y) +# G = zeros(Float64, length(x), length(y)) +# for I ∈ CartesianIndices(G) +# G[I] = x[I[1]]*y[I[2]] +# end +# +# return G +# end +# +# g_x = [1,2,3,4.0,5] +# g_y = [5,4,3,2,1.0,11] +# +# G_w = prod_matrix(d_x_l, g_y) +# G_e = prod_matrix(d_x_u, g_y) +# G_s = prod_matrix(g_x, d_y_l) +# G_n = prod_matrix(g_x, d_y_u) +# +# +# @test size(d_w*g_y) == (UnknownDim,6) +# @test size(d_e*g_y) == (UnknownDim,6) +# @test size(d_s*g_x) == (5,UnknownDim) +# @test size(d_n*g_x) == (5,UnknownDim) +# +# # These tests should be moved to where they are possible (i.e we know what the grid should be) +# @test_broken collect(d_w*g_y) ≈ G_w +# @test_broken collect(d_e*g_y) ≈ G_e +# @test_broken collect(d_s*g_x) ≈ G_s +# @test_broken collect(d_n*g_x) ≈ G_n +# end +# +# @testset "BoundaryQuadrature" begin +# op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") +# g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) +# +# H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) +# H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) +# H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) +# H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) +# +# v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) +# +# function get_quadrature(N) +# qc = op.quadratureClosure +# q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) +# @assert length(q) == N +# return q +# end +# +# v_w = v[1,:] +# v_e = v[10,:] +# v_s = v[:,1] +# v_n = v[:,11] +# +# q_x = spacing(g)[1].*get_quadrature(10) +# q_y = spacing(g)[2].*get_quadrature(11) +# +# @test H_w isa TensorOperator{T,1} where T +# +# @test domain_size(H_w, (3,)) == (3,) +# @test domain_size(H_n, (3,)) == (3,) +# +# @test range_size(H_w, (3,)) == (3,) +# @test range_size(H_n, (3,)) == (3,) +# +# @test size(H_w*v_w) == (11,) +# @test size(H_e*v_e) == (11,) +# @test size(H_s*v_s) == (10,) +# @test size(H_n*v_n) == (10,) +# +# @test collect(H_w*v_w) ≈ q_y.*v_w +# @test collect(H_e*v_e) ≈ q_y.*v_e +# @test collect(H_s*v_s) ≈ q_x.*v_s +# @test collect(H_n*v_n) ≈ q_x.*v_n +# +# @test collect(H_w'*v_w) == collect(H_w'*v_w) +# @test collect(H_e'*v_e) == collect(H_e'*v_e) +# @test collect(H_s'*v_s) == collect(H_s'*v_s) +# @test collect(H_n'*v_n) == collect(H_n'*v_n) +# end - # These tests should be moved to where they are possible (i.e we know what the grid should be) - @test_broken collect(e_w*g_y) == G_w - @test_broken collect(e_e*g_y) == G_e - @test_broken collect(e_s*g_x) == G_s - @test_broken collect(e_n*g_x) == G_n end - -@testset "NormalDerivative" begin - op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") - g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) - - d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) - d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) - d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) - d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) - - - v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) - v∂x = evalOn(g, (x,y)-> 2*x + y) - v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) - - @test d_w isa TensorMapping{T,2,1} where T - @test d_w' isa TensorMapping{T,1,2} where T - - @test domain_size(d_w, (3,2)) == (2,) - @test domain_size(d_e, (3,2)) == (2,) - @test domain_size(d_s, (3,2)) == (3,) - @test domain_size(d_n, (3,2)) == (3,) - - @test size(d_w'*v) == (6,) - @test size(d_e'*v) == (6,) - @test size(d_s'*v) == (5,) - @test size(d_n'*v) == (5,) - - @test collect(d_w'*v) ≈ v∂x[1,:] - @test collect(d_e'*v) ≈ v∂x[5,:] - @test collect(d_s'*v) ≈ v∂y[:,1] - @test collect(d_n'*v) ≈ v∂y[:,6] - - - d_x_l = zeros(Float64, 5) - d_x_u = zeros(Float64, 5) - for i ∈ eachindex(d_x_l) - d_x_l[i] = op.dClosure[i-1] - d_x_u[i] = -op.dClosure[length(d_x_u)-i] - end - - d_y_l = zeros(Float64, 6) - d_y_u = zeros(Float64, 6) - for i ∈ eachindex(d_y_l) - d_y_l[i] = op.dClosure[i-1] - d_y_u[i] = -op.dClosure[length(d_y_u)-i] - end - - function prod_matrix(x,y) - G = zeros(Float64, length(x), length(y)) - for I ∈ CartesianIndices(G) - G[I] = x[I[1]]*y[I[2]] - end - - return G - end - - g_x = [1,2,3,4.0,5] - g_y = [5,4,3,2,1.0,11] - - G_w = prod_matrix(d_x_l, g_y) - G_e = prod_matrix(d_x_u, g_y) - G_s = prod_matrix(g_x, d_y_l) - G_n = prod_matrix(g_x, d_y_u) - - - @test size(d_w*g_y) == (UnknownDim,6) - @test size(d_e*g_y) == (UnknownDim,6) - @test size(d_s*g_x) == (5,UnknownDim) - @test size(d_n*g_x) == (5,UnknownDim) - - # These tests should be moved to where they are possible (i.e we know what the grid should be) - @test_broken collect(d_w*g_y) ≈ G_w - @test_broken collect(d_e*g_y) ≈ G_e - @test_broken collect(d_s*g_x) ≈ G_s - @test_broken collect(d_n*g_x) ≈ G_n -end - -@testset "BoundaryQuadrature" begin - op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") - g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) - - H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) - H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) - H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) - H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) - - v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) - - function get_quadrature(N) - qc = op.quadratureClosure - q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) - @assert length(q) == N - return q - end - - v_w = v[1,:] - v_e = v[10,:] - v_s = v[:,1] - v_n = v[:,11] - - q_x = spacing(g)[1].*get_quadrature(10) - q_y = spacing(g)[2].*get_quadrature(11) - - @test H_w isa TensorOperator{T,1} where T - - @test domain_size(H_w, (3,)) == (3,) - @test domain_size(H_n, (3,)) == (3,) - - @test range_size(H_w, (3,)) == (3,) - @test range_size(H_n, (3,)) == (3,) - - @test size(H_w*v_w) == (11,) - @test size(H_e*v_e) == (11,) - @test size(H_s*v_s) == (10,) - @test size(H_n*v_n) == (10,) - - @test collect(H_w*v_w) ≈ q_y.*v_w - @test collect(H_e*v_e) ≈ q_y.*v_e - @test collect(H_s*v_s) ≈ q_x.*v_s - @test collect(H_n*v_n) ≈ q_x.*v_n - - @test collect(H_w'*v_w) == collect(H_w'*v_w) - @test collect(H_e'*v_e) == collect(H_e'*v_e) - @test collect(H_s'*v_s) == collect(H_s'*v_s) - @test collect(H_n'*v_n) == collect(H_n'*v_n) -end - -end \ No newline at end of file