changeset 351:ffddaf053085

Tests in testDiffOps are to be moved to testSbpOperators. Already moved tests are removed, while those not yet moved are commented out.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Sun, 27 Sep 2020 15:26:05 +0200
parents 28e71a861531
children e22b061f5299 b99b33946cba 0af6da238d95
files test/testDiffOps.jl
diffstat 1 files changed, 188 insertions(+), 263 deletions(-) [+]
line wrap: on
line diff
diff -r 28e71a861531 -r ffddaf053085 test/testDiffOps.jl
--- a/test/testDiffOps.jl	Sun Sep 27 13:47:40 2020 +0200
+++ b/test/testDiffOps.jl	Sun Sep 27 15:26:05 2020 +0200
@@ -6,268 +6,193 @@
 using Sbplib.LazyTensors
 
 @testset "DiffOps" begin
-
-@testset "Laplace2D" begin
-    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
-    Lx = 3.5
-    Ly = 7.2
-    g = EquidistantGrid((42,41), (0.0, 0.0), (Lx,Ly))
-    L = Laplace(g, 1., op)
-    H = quadrature(L)
-
-    f0(x::Float64,y::Float64) = 2.
-    f1(x::Float64,y::Float64) = x+y
-    f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2
-    f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3
-    f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4
-    f5(x::Float64,y::Float64) = sin(x) + cos(y)
-    f5ₓₓ(x::Float64,y::Float64) = -f5(x,y)
-
-    v0 = evalOn(g,f0)
-    v1 = evalOn(g,f1)
-    v2 = evalOn(g,f2)
-    v3 = evalOn(g,f3)
-    v4 = evalOn(g,f4)
-    v5 = evalOn(g,f5)
-    v5ₓₓ = evalOn(g,f5ₓₓ)
-
-    @test L isa TensorOperator{T,2} where T
-    @test L' isa TensorMapping{T,2,2} where T
-
-    # TODO: Should perhaps set tolerance level for isapporx instead?
-    #       Are these tolerance levels resonable or should tests be constructed
-    #       differently?
-    equalitytol = 0.5*1e-10
-    accuracytol = 0.5*1e-3
-    # 4th order interior stencil, 2nd order boundary stencil,
-    # implies that L*v should be exact for v - monomial up to order 3.
-    # Exact differentiation is measured point-wise. For other grid functions
-    # the error is measured in the H-norm.
-    @test all(abs.(collect(L*v0)) .<= equalitytol)
-    @test all(abs.(collect(L*v1)) .<= equalitytol)
-    @test all(collect(L*v2) .≈ v0) # Seems to be more accurate
-    @test all(abs.((collect(L*v3) - v1)) .<= equalitytol)
-    e4 = collect(L*v4) - v2
-    e5 = collect(L*v5) - v5ₓₓ
-    @test sum(collect(H*e4.^2)) <= accuracytol
-    @test sum(collect(H*e5.^2)) <= accuracytol
-end
-
-@testset "Quadrature" begin
-    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
-    Lx = 2.3
-    Ly = 5.2
-    g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
-    H = Quadrature(op,g)
-    v = ones(Float64, size(g))
-
-    @test H isa TensorOperator{T,2} where T
-    @test H' isa TensorMapping{T,2,2} where T
-    @test sum(collect(H*v)) ≈ (Lx*Ly)
-    @test collect(H*v) == collect(H'*v)
-end
-
-@testset "InverseQuadrature" begin
-    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
-    Lx = 7.3
-    Ly = 8.2
-    g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
-    H = Quadrature(op,g)
-    Hinv = InverseQuadrature(op,g)
-    v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
-
-    @test Hinv isa TensorOperator{T,2} where T
-    @test Hinv' isa TensorMapping{T,2,2} where T
-    @test collect(Hinv*H*v)  ≈ v
-    @test collect(Hinv*v) == collect(Hinv'*v)
-end
-
-@testset "BoundaryValue" begin
-    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
-    g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0))
-
-    e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}())
-    e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}())
-    e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}())
-    e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}())
-
-    v = zeros(Float64, 4, 5)
-    v[:,5] = [1, 2, 3,4]
-    v[:,4] = [1, 2, 3,4]
-    v[:,3] = [4, 5, 6, 7]
-    v[:,2] = [7, 8, 9, 10]
-    v[:,1] = [10, 11, 12, 13]
-
-    @test e_w  isa TensorMapping{T,2,1} where T
-    @test e_w' isa TensorMapping{T,1,2} where T
-
-    @test domain_size(e_w, (3,2)) == (2,)
-    @test domain_size(e_e, (3,2)) == (2,)
-    @test domain_size(e_s, (3,2)) == (3,)
-    @test domain_size(e_n, (3,2)) == (3,)
-
-    @test size(e_w'*v) == (5,)
-    @test size(e_e'*v) == (5,)
-    @test size(e_s'*v) == (4,)
-    @test size(e_n'*v) == (4,)
-
-    @test collect(e_w'*v) == [10,7,4,1.0,1]
-    @test collect(e_e'*v) == [13,10,7,4,4.0]
-    @test collect(e_s'*v) == [10,11,12,13.0]
-    @test collect(e_n'*v) == [1,2,3,4.0]
-
-    g_x = [1,2,3,4.0]
-    g_y = [5,4,3,2,1.0]
-
-    G_w = zeros(Float64, (4,5))
-    G_w[1,:] = g_y
-
-    G_e = zeros(Float64, (4,5))
-    G_e[4,:] = g_y
-
-    G_s = zeros(Float64, (4,5))
-    G_s[:,1] = g_x
-
-    G_n = zeros(Float64, (4,5))
-    G_n[:,5] = g_x
-
-    @test size(e_w*g_y) == (UnknownDim,5)
-    @test size(e_e*g_y) == (UnknownDim,5)
-    @test size(e_s*g_x) == (4,UnknownDim)
-    @test size(e_n*g_x) == (4,UnknownDim)
+#
+# @testset "BoundaryValue" begin
+#     op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
+#     g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0))
+#
+#     e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}())
+#     e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}())
+#     e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}())
+#     e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}())
+#
+#     v = zeros(Float64, 4, 5)
+#     v[:,5] = [1, 2, 3,4]
+#     v[:,4] = [1, 2, 3,4]
+#     v[:,3] = [4, 5, 6, 7]
+#     v[:,2] = [7, 8, 9, 10]
+#     v[:,1] = [10, 11, 12, 13]
+#
+#     @test e_w  isa TensorMapping{T,2,1} where T
+#     @test e_w' isa TensorMapping{T,1,2} where T
+#
+#     @test domain_size(e_w, (3,2)) == (2,)
+#     @test domain_size(e_e, (3,2)) == (2,)
+#     @test domain_size(e_s, (3,2)) == (3,)
+#     @test domain_size(e_n, (3,2)) == (3,)
+#
+#     @test size(e_w'*v) == (5,)
+#     @test size(e_e'*v) == (5,)
+#     @test size(e_s'*v) == (4,)
+#     @test size(e_n'*v) == (4,)
+#
+#     @test collect(e_w'*v) == [10,7,4,1.0,1]
+#     @test collect(e_e'*v) == [13,10,7,4,4.0]
+#     @test collect(e_s'*v) == [10,11,12,13.0]
+#     @test collect(e_n'*v) == [1,2,3,4.0]
+#
+#     g_x = [1,2,3,4.0]
+#     g_y = [5,4,3,2,1.0]
+#
+#     G_w = zeros(Float64, (4,5))
+#     G_w[1,:] = g_y
+#
+#     G_e = zeros(Float64, (4,5))
+#     G_e[4,:] = g_y
+#
+#     G_s = zeros(Float64, (4,5))
+#     G_s[:,1] = g_x
+#
+#     G_n = zeros(Float64, (4,5))
+#     G_n[:,5] = g_x
+#
+#     @test size(e_w*g_y) == (UnknownDim,5)
+#     @test size(e_e*g_y) == (UnknownDim,5)
+#     @test size(e_s*g_x) == (4,UnknownDim)
+#     @test size(e_n*g_x) == (4,UnknownDim)
+#
+#     # These tests should be moved to where they are possible (i.e we know what the grid should be)
+#     @test_broken collect(e_w*g_y) == G_w
+#     @test_broken collect(e_e*g_y) == G_e
+#     @test_broken collect(e_s*g_x) == G_s
+#     @test_broken collect(e_n*g_x) == G_n
+# end
+#
+# @testset "NormalDerivative" begin
+#     op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
+#     g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0))
+#
+#     d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}())
+#     d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}())
+#     d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}())
+#     d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}())
+#
+#
+#     v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
+#     v∂x = evalOn(g, (x,y)-> 2*x + y)
+#     v∂y = evalOn(g, (x,y)-> 2*(y-1) + x)
+#
+#     @test d_w  isa TensorMapping{T,2,1} where T
+#     @test d_w' isa TensorMapping{T,1,2} where T
+#
+#     @test domain_size(d_w, (3,2)) == (2,)
+#     @test domain_size(d_e, (3,2)) == (2,)
+#     @test domain_size(d_s, (3,2)) == (3,)
+#     @test domain_size(d_n, (3,2)) == (3,)
+#
+#     @test size(d_w'*v) == (6,)
+#     @test size(d_e'*v) == (6,)
+#     @test size(d_s'*v) == (5,)
+#     @test size(d_n'*v) == (5,)
+#
+#     @test collect(d_w'*v) ≈ v∂x[1,:]
+#     @test collect(d_e'*v) ≈ v∂x[5,:]
+#     @test collect(d_s'*v) ≈ v∂y[:,1]
+#     @test collect(d_n'*v) ≈ v∂y[:,6]
+#
+#
+#     d_x_l = zeros(Float64, 5)
+#     d_x_u = zeros(Float64, 5)
+#     for i ∈ eachindex(d_x_l)
+#         d_x_l[i] = op.dClosure[i-1]
+#         d_x_u[i] = -op.dClosure[length(d_x_u)-i]
+#     end
+#
+#     d_y_l = zeros(Float64, 6)
+#     d_y_u = zeros(Float64, 6)
+#     for i ∈ eachindex(d_y_l)
+#         d_y_l[i] = op.dClosure[i-1]
+#         d_y_u[i] = -op.dClosure[length(d_y_u)-i]
+#     end
+#
+#     function prod_matrix(x,y)
+#         G = zeros(Float64, length(x), length(y))
+#         for I ∈ CartesianIndices(G)
+#             G[I] = x[I[1]]*y[I[2]]
+#         end
+#
+#         return G
+#     end
+#
+#     g_x = [1,2,3,4.0,5]
+#     g_y = [5,4,3,2,1.0,11]
+#
+#     G_w = prod_matrix(d_x_l, g_y)
+#     G_e = prod_matrix(d_x_u, g_y)
+#     G_s = prod_matrix(g_x, d_y_l)
+#     G_n = prod_matrix(g_x, d_y_u)
+#
+#
+#     @test size(d_w*g_y) == (UnknownDim,6)
+#     @test size(d_e*g_y) == (UnknownDim,6)
+#     @test size(d_s*g_x) == (5,UnknownDim)
+#     @test size(d_n*g_x) == (5,UnknownDim)
+#
+#     # These tests should be moved to where they are possible (i.e we know what the grid should be)
+#     @test_broken collect(d_w*g_y) ≈ G_w
+#     @test_broken collect(d_e*g_y) ≈ G_e
+#     @test_broken collect(d_s*g_x) ≈ G_s
+#     @test_broken collect(d_n*g_x) ≈ G_n
+# end
+#
+# @testset "BoundaryQuadrature" begin
+#     op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
+#     g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0))
+#
+#     H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}())
+#     H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}())
+#     H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}())
+#     H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}())
+#
+#     v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
+#
+#     function get_quadrature(N)
+#         qc = op.quadratureClosure
+#         q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...)
+#         @assert length(q) == N
+#         return q
+#     end
+#
+#     v_w = v[1,:]
+#     v_e = v[10,:]
+#     v_s = v[:,1]
+#     v_n = v[:,11]
+#
+#     q_x = spacing(g)[1].*get_quadrature(10)
+#     q_y = spacing(g)[2].*get_quadrature(11)
+#
+#     @test H_w isa TensorOperator{T,1} where T
+#
+#     @test domain_size(H_w, (3,)) == (3,)
+#     @test domain_size(H_n, (3,)) == (3,)
+#
+#     @test range_size(H_w, (3,)) == (3,)
+#     @test range_size(H_n, (3,)) == (3,)
+#
+#     @test size(H_w*v_w) == (11,)
+#     @test size(H_e*v_e) == (11,)
+#     @test size(H_s*v_s) == (10,)
+#     @test size(H_n*v_n) == (10,)
+#
+#     @test collect(H_w*v_w) ≈ q_y.*v_w
+#     @test collect(H_e*v_e) ≈ q_y.*v_e
+#     @test collect(H_s*v_s) ≈ q_x.*v_s
+#     @test collect(H_n*v_n) ≈ q_x.*v_n
+#
+#     @test collect(H_w'*v_w) == collect(H_w'*v_w)
+#     @test collect(H_e'*v_e) == collect(H_e'*v_e)
+#     @test collect(H_s'*v_s) == collect(H_s'*v_s)
+#     @test collect(H_n'*v_n) == collect(H_n'*v_n)
+# end
 
-    # These tests should be moved to where they are possible (i.e we know what the grid should be)
-    @test_broken collect(e_w*g_y) == G_w
-    @test_broken collect(e_e*g_y) == G_e
-    @test_broken collect(e_s*g_x) == G_s
-    @test_broken collect(e_n*g_x) == G_n
 end
-
-@testset "NormalDerivative" begin
-    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
-    g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0))
-
-    d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}())
-    d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}())
-    d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}())
-    d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}())
-
-
-    v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
-    v∂x = evalOn(g, (x,y)-> 2*x + y)
-    v∂y = evalOn(g, (x,y)-> 2*(y-1) + x)
-
-    @test d_w  isa TensorMapping{T,2,1} where T
-    @test d_w' isa TensorMapping{T,1,2} where T
-
-    @test domain_size(d_w, (3,2)) == (2,)
-    @test domain_size(d_e, (3,2)) == (2,)
-    @test domain_size(d_s, (3,2)) == (3,)
-    @test domain_size(d_n, (3,2)) == (3,)
-
-    @test size(d_w'*v) == (6,)
-    @test size(d_e'*v) == (6,)
-    @test size(d_s'*v) == (5,)
-    @test size(d_n'*v) == (5,)
-
-    @test collect(d_w'*v) ≈ v∂x[1,:]
-    @test collect(d_e'*v) ≈ v∂x[5,:]
-    @test collect(d_s'*v) ≈ v∂y[:,1]
-    @test collect(d_n'*v) ≈ v∂y[:,6]
-
-
-    d_x_l = zeros(Float64, 5)
-    d_x_u = zeros(Float64, 5)
-    for i ∈ eachindex(d_x_l)
-        d_x_l[i] = op.dClosure[i-1]
-        d_x_u[i] = -op.dClosure[length(d_x_u)-i]
-    end
-
-    d_y_l = zeros(Float64, 6)
-    d_y_u = zeros(Float64, 6)
-    for i ∈ eachindex(d_y_l)
-        d_y_l[i] = op.dClosure[i-1]
-        d_y_u[i] = -op.dClosure[length(d_y_u)-i]
-    end
-
-    function prod_matrix(x,y)
-        G = zeros(Float64, length(x), length(y))
-        for I ∈ CartesianIndices(G)
-            G[I] = x[I[1]]*y[I[2]]
-        end
-
-        return G
-    end
-
-    g_x = [1,2,3,4.0,5]
-    g_y = [5,4,3,2,1.0,11]
-
-    G_w = prod_matrix(d_x_l, g_y)
-    G_e = prod_matrix(d_x_u, g_y)
-    G_s = prod_matrix(g_x, d_y_l)
-    G_n = prod_matrix(g_x, d_y_u)
-
-
-    @test size(d_w*g_y) == (UnknownDim,6)
-    @test size(d_e*g_y) == (UnknownDim,6)
-    @test size(d_s*g_x) == (5,UnknownDim)
-    @test size(d_n*g_x) == (5,UnknownDim)
-
-    # These tests should be moved to where they are possible (i.e we know what the grid should be)
-    @test_broken collect(d_w*g_y) ≈ G_w
-    @test_broken collect(d_e*g_y) ≈ G_e
-    @test_broken collect(d_s*g_x) ≈ G_s
-    @test_broken collect(d_n*g_x) ≈ G_n
-end
-
-@testset "BoundaryQuadrature" begin
-    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
-    g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0))
-
-    H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}())
-    H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}())
-    H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}())
-    H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}())
-
-    v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
-
-    function get_quadrature(N)
-        qc = op.quadratureClosure
-        q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...)
-        @assert length(q) == N
-        return q
-    end
-
-    v_w = v[1,:]
-    v_e = v[10,:]
-    v_s = v[:,1]
-    v_n = v[:,11]
-
-    q_x = spacing(g)[1].*get_quadrature(10)
-    q_y = spacing(g)[2].*get_quadrature(11)
-
-    @test H_w isa TensorOperator{T,1} where T
-
-    @test domain_size(H_w, (3,)) == (3,)
-    @test domain_size(H_n, (3,)) == (3,)
-
-    @test range_size(H_w, (3,)) == (3,)
-    @test range_size(H_n, (3,)) == (3,)
-
-    @test size(H_w*v_w) == (11,)
-    @test size(H_e*v_e) == (11,)
-    @test size(H_s*v_s) == (10,)
-    @test size(H_n*v_n) == (10,)
-
-    @test collect(H_w*v_w) ≈ q_y.*v_w
-    @test collect(H_e*v_e) ≈ q_y.*v_e
-    @test collect(H_s*v_s) ≈ q_x.*v_s
-    @test collect(H_n*v_n) ≈ q_x.*v_n
-
-    @test collect(H_w'*v_w) == collect(H_w'*v_w)
-    @test collect(H_e'*v_e) == collect(H_e'*v_e)
-    @test collect(H_s'*v_s) == collect(H_s'*v_s)
-    @test collect(H_n'*v_n) == collect(H_n'*v_n)
-end
-
-end
\ No newline at end of file