Mercurial > repos > public > sbplib_julia
changeset 262:f1e90a92ad74 boundary_conditions
Add Quadrature and InverseQuadrature for Laplace as TensorMappings. Implement and test the 2D case. Fix implementation of apply_transpose for BoundaryQuadrature and add tests.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 26 Nov 2019 08:28:26 -0800 |
parents | 01017d2b46b0 |
children | b577b5f64530 |
files | DiffOps/src/laplace.jl DiffOps/test/runtests.jl |
diffstat | 2 files changed, 92 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/DiffOps/src/laplace.jl Tue Nov 26 08:19:22 2019 -0800 +++ b/DiffOps/src/laplace.jl Tue Nov 26 08:28:26 2019 -0800 @@ -31,10 +31,65 @@ apply(L, v, I) end +quadrature(L::Laplace) = Quadrature(L.op, L.grid) +inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) +""" + Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the quadrature operator `H` of Dim dimension as a TensorMapping +""" +struct Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + op::D2{T,N,M,K} + grid::EquidistantGrid{Dim,T} +end +export Quadrature + +LazyTensors.range_size(H::Quadrature{2}, domain_size::NTuple{2,Integer}) where T = size(H.grid) +LazyTensors.domain_size(H::Quadrature{2}, range_size::NTuple{2,Integer}) where T = size(H.grid) + +# TODO: Dispatch on Tuple{Index{R1},Index{R2}}? +@inline function LazyTensors.apply(H::Quadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer}) + I = CartesianIndex(I); + N = size(H.grid) + # Quadrature in x direction + @inbounds q = apply_quadrature(H.op, H.grid.spacing[1], v[I] , I[1], N[1]) + # Quadrature in y-direction + @inbounds q = apply_quadrature(H.op, H.grid.spacing[2], q, I[2], N[2]) + return q +end + +LazyTensors.apply_transpose(H::Quadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer}) = LazyTensors.apply(H,v,I) + +""" + InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the inverse quadrature operator `inv(H)` of Dim dimension as a TensorMapping +""" +struct InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + op::D2{T,N,M,K} + grid::EquidistantGrid{Dim,T} +end +export InverseQuadrature + +LazyTensors.range_size(H_inv::InverseQuadrature{2}, domain_size::NTuple{2,Integer}) where T = size(H_inv.grid) +LazyTensors.domain_size(H_inv::InverseQuadrature{2}, range_size::NTuple{2,Integer}) where T = size(H_inv.grid) + +# TODO: Dispatch on Tuple{Index{R1},Index{R2}}? +@inline function LazyTensors.apply(H_inv::InverseQuadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer}) + I = CartesianIndex(I); + N = size(H_inv.grid) + # Inverse quadrature in x direction + @inbounds q_inv = apply_inverse_quadrature(H_inv.op, H_inv.grid.inverse_spacing[1], v[I] , I[1], N[1]) + # Inverse quadrature in y-direction + @inbounds q_inv = apply_inverse_quadrature(H_inv.op, H_inv.grid.inverse_spacing[2], q_inv, I[2], N[2]) + return q_inv +end + +LazyTensors.apply_transpose(H_inv::InverseQuadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer}) = LazyTensors.apply(H_inv,v,I) """ BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1} @@ -66,8 +121,6 @@ return apply_e_T(e.op, u, region(e.bId)) end - - """ NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} @@ -113,13 +166,14 @@ export BoundaryQuadrature # TODO: Make this independent of dimension +# TODO: Dispatch directly on Index{R}? function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Int}) where T - h = spacing(q.grid)[3-dim(q.bId)] + h = q.grid.spacing[3-dim(q.bId)] N = size(v) return apply_quadrature(q.op, h, v[I[1]], I[1], N[1]) end -LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Int}) where T = apply(q,v,I) +LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Int}) where T = LazyTensors.apply(q,v,I)
--- a/DiffOps/test/runtests.jl Tue Nov 26 08:19:22 2019 -0800 +++ b/DiffOps/test/runtests.jl Tue Nov 26 08:28:26 2019 -0800 @@ -5,6 +5,35 @@ using RegionIndices using LazyTensors +@testset "Quadrature" begin + op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + Lx = 2.3 + Ly = 5.2 + g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) + H = Quadrature(op,g) + v = ones(Float64, size(g)) + + @test H isa TensorMapping{T,2,2} where T + @test H' isa TensorMapping{T,2,2} where T + @test sum(collect(H*v)) ≈ (Lx*Ly) + @test collect(H*v) == collect(H'*v) +end + +@testset "InverseQuadrature" begin + op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + Lx = 7.3 + Ly = 8.2 + g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) + H = Quadrature(op,g) + Hinv = InverseQuadrature(op,g) + v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) + + @test Hinv isa TensorMapping{T,2,2} where T + @test Hinv' isa TensorMapping{T,2,2} where T + @test collect(Hinv*H*v) ≈ v + @test collect(Hinv*v) == collect(Hinv'*v) +end + @testset "BoundaryValue" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) @@ -184,4 +213,9 @@ @test collect(H_e*v_e) ≈ q_y.*v_e @test collect(H_s*v_s) ≈ q_x.*v_s @test collect(H_n*v_n) ≈ q_x.*v_n + + @test collect(H_w'*v_w) == collect(H_w'*v_w) + @test collect(H_e'*v_e) == collect(H_e'*v_e) + @test collect(H_s'*v_s) == collect(H_s'*v_s) + @test collect(H_n'*v_n) == collect(H_n'*v_n) end