view DiffOps/src/laplace.jl @ 262:f1e90a92ad74 boundary_conditions

Add Quadrature and InverseQuadrature for Laplace as TensorMappings. Implement and test the 2D case. Fix implementation of apply_transpose for BoundaryQuadrature and add tests.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Tue, 26 Nov 2019 08:28:26 -0800
parents 5571d2c5bf0f
children 9ad447176ba1
line wrap: on
line source

struct Laplace{Dim,T<:Real,N,M,K} <: DiffOpCartesian{Dim}
    grid::EquidistantGrid{Dim,T}
    a::T
    op::D2{Float64,N,M,K}
end

function apply(L::Laplace{Dim}, v::AbstractArray{T,Dim} where T, I::CartesianIndex{Dim}) where Dim
    error("not implemented")
end

# u = L*v
function apply(L::Laplace{1}, v::AbstractVector, i::Int)
    uᵢ = L.a * SbpOperators.apply(L.op, L.grid.spacing[1], v, i)
    return uᵢ
end

@inline function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, I::Tuple{Index{R1}, Index{R2}}) where {R1, R2}
    # 2nd x-derivative
    @inbounds vx = view(v, :, Int(I[2]))
    @inbounds uᵢ = L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[1], vx , I[1])
    # 2nd y-derivative
    @inbounds vy = view(v, Int(I[1]), :)
    @inbounds uᵢ += L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[2], vy, I[2])
    # NOTE: the package qualifier 'SbpOperators' can problably be removed once all "applying" objects use LazyTensors
    return uᵢ
end

# Slow but maybe convenient?
function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, i::CartesianIndex{2})
    I = Index{Unknown}.(Tuple(i))
    apply(L, v, I)
end

quadrature(L::Laplace) = Quadrature(L.op, L.grid)
inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid)
boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId)
normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId)
boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId)

"""
    Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}

Implements the quadrature operator `H` of Dim dimension as a TensorMapping
"""
struct Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
    op::D2{T,N,M,K}
    grid::EquidistantGrid{Dim,T}
end
export Quadrature

LazyTensors.range_size(H::Quadrature{2}, domain_size::NTuple{2,Integer}) where T = size(H.grid)
LazyTensors.domain_size(H::Quadrature{2}, range_size::NTuple{2,Integer}) where T = size(H.grid)

# TODO: Dispatch on Tuple{Index{R1},Index{R2}}?
@inline function LazyTensors.apply(H::Quadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer})
    I = CartesianIndex(I);
    N = size(H.grid)
    # Quadrature in x direction
    @inbounds q = apply_quadrature(H.op, H.grid.spacing[1], v[I] , I[1], N[1])
    # Quadrature in y-direction
    @inbounds q = apply_quadrature(H.op, H.grid.spacing[2], q, I[2], N[2])
    return q
end

LazyTensors.apply_transpose(H::Quadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer}) = LazyTensors.apply(H,v,I)

"""
    InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}

Implements the inverse quadrature operator `inv(H)` of Dim dimension as a TensorMapping
"""
struct InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
    op::D2{T,N,M,K}
    grid::EquidistantGrid{Dim,T}
end
export InverseQuadrature

LazyTensors.range_size(H_inv::InverseQuadrature{2}, domain_size::NTuple{2,Integer}) where T = size(H_inv.grid)
LazyTensors.domain_size(H_inv::InverseQuadrature{2}, range_size::NTuple{2,Integer}) where T = size(H_inv.grid)

# TODO: Dispatch on Tuple{Index{R1},Index{R2}}?
@inline function LazyTensors.apply(H_inv::InverseQuadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer})
    I = CartesianIndex(I);
    N = size(H_inv.grid)
    # Inverse quadrature in x direction
    @inbounds q_inv = apply_inverse_quadrature(H_inv.op, H_inv.grid.inverse_spacing[1], v[I] , I[1], N[1])
    # Inverse quadrature in y-direction
    @inbounds q_inv = apply_inverse_quadrature(H_inv.op, H_inv.grid.inverse_spacing[2], q_inv, I[2], N[2])
    return q_inv
end

LazyTensors.apply_transpose(H_inv::InverseQuadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer}) = LazyTensors.apply(H_inv,v,I)

"""
    BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1}

Implements the boundary operator `e` as a TensorMapping
"""
struct BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1}
    op::D2{T,N,M,K}
    grid::EquidistantGrid{2}
    bId::CartesianBoundary
end
export BoundaryValue

# TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue?
# Can we give special treatment to TensorMappings that go to a higher dim?
LazyTensors.range_size(e::BoundaryValue{T}, domain_size::NTuple{1,Integer}) where T = size(e.grid)
LazyTensors.domain_size(e::BoundaryValue{T}, range_size::NTuple{2,Integer}) where T = (range_size[3-dim(e.bId)],)

# TODO: Make this independent of dimension
function LazyTensors.apply(e::BoundaryValue, v::AbstractArray, I::NTuple{2,Int})
    i = I[dim(e.bId)]
    j = I[3-dim(e.bId)]
    N_i = size(e.grid)[dim(e.bId)]
    return apply_e(e.op, v[j], N_i, i, region(e.bId))
end

function LazyTensors.apply_transpose(e::BoundaryValue, v::AbstractArray, I::NTuple{1,Int})
    u = selectdim(v,3-dim(e.bId),I[1])
    return apply_e_T(e.op, u, region(e.bId))
end

"""
    NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1}

Implements the boundary operator `d` as a TensorMapping
"""
struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1}
    op::D2{T,N,M,K}
    grid::EquidistantGrid{2}
    bId::CartesianBoundary
end
export NormalDerivative

# TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue?
# Can we give special treatment to TensorMappings that go to a higher dim?
LazyTensors.range_size(e::NormalDerivative{T}, domain_size::NTuple{1,Integer}) where T = size(e.grid)
LazyTensors.domain_size(e::NormalDerivative{T}, range_size::NTuple{2,Integer}) where T = (range_size[3-dim(e.bId)],)

# TODO: Not type stable D:<
# TODO: Make this independent of dimension
function LazyTensors.apply(d::NormalDerivative, v::AbstractArray, I::NTuple{2,Int})
    i = I[dim(d.bId)]
    j = I[3-dim(d.bId)]
    N_i = size(d.grid)[dim(d.bId)]
    h_inv = d.grid.inverse_spacing[dim(d.bId)]
    return apply_d(d.op, h_inv, v[j], N_i, i, region(d.bId))
end

function LazyTensors.apply_transpose(d::NormalDerivative, v::AbstractArray, I::NTuple{1,Int})
    u = selectdim(v,3-dim(d.bId),I[1])
    return apply_d_T(d.op, d.grid.inverse_spacing[dim(d.bId)], u, region(d.bId))
end

"""
    BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}

Implements the boundary operator `q` as a TensorOperator
"""
struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
    op::D2{T,N,M,K}
    grid::EquidistantGrid{2}
    bId::CartesianBoundary
end
export BoundaryQuadrature

# TODO: Make this independent of dimension
# TODO: Dispatch directly on Index{R}?
function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Int}) where T
    h = q.grid.spacing[3-dim(q.bId)]
    N = size(v)
    return apply_quadrature(q.op, h, v[I[1]], I[1], N[1])
end

LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Int}) where T = LazyTensors.apply(q,v,I)




struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end

function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid}
    e = boundary_value(L.op, Bid())
    d = normal_derivative(L.op, Bid())
    Hᵧ = boundary_quadrature(L.op, Bid())

    return -L.Hi*e*Hᵧ*(d'*v - g)
    # Need to handle d'*v - g so that it is an AbstractArray that TensorMappings can act on
end

struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition
    tau::Float64
end

function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid}
    e = boundary_value(L.op, Bid())
    d = normal_derivative(L.op, Bid())
    Hᵧ = boundary_quadrature(L.op, Bid())

    return -L.Hi*(tau/h*e + d)*Hᵧ*(e'*v - g)
    # Need to handle scalar multiplication and addition of TensorMapping
end

# function apply(s::MyWaveEq{D},  v::AbstractArray{T,D}, i::CartesianIndex{D}) where D
    #   return apply(s.L, v, i) +
# 		sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau),  v, s.g_w, i) +
# 		sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau),  v, s.g_e, i) +
# 		sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau),  v, s.g_s, i) +
# 		sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau),  v, s.g_n, i)
# end