Mercurial > repos > public > sbplib_julia
view DiffOps/src/laplace.jl @ 262:f1e90a92ad74 boundary_conditions
Add Quadrature and InverseQuadrature for Laplace as TensorMappings. Implement and test the 2D case. Fix implementation of apply_transpose for BoundaryQuadrature and add tests.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 26 Nov 2019 08:28:26 -0800 |
parents | 5571d2c5bf0f |
children | 9ad447176ba1 |
line wrap: on
line source
struct Laplace{Dim,T<:Real,N,M,K} <: DiffOpCartesian{Dim} grid::EquidistantGrid{Dim,T} a::T op::D2{Float64,N,M,K} end function apply(L::Laplace{Dim}, v::AbstractArray{T,Dim} where T, I::CartesianIndex{Dim}) where Dim error("not implemented") end # u = L*v function apply(L::Laplace{1}, v::AbstractVector, i::Int) uᵢ = L.a * SbpOperators.apply(L.op, L.grid.spacing[1], v, i) return uᵢ end @inline function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, I::Tuple{Index{R1}, Index{R2}}) where {R1, R2} # 2nd x-derivative @inbounds vx = view(v, :, Int(I[2])) @inbounds uᵢ = L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[1], vx , I[1]) # 2nd y-derivative @inbounds vy = view(v, Int(I[1]), :) @inbounds uᵢ += L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[2], vy, I[2]) # NOTE: the package qualifier 'SbpOperators' can problably be removed once all "applying" objects use LazyTensors return uᵢ end # Slow but maybe convenient? function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, i::CartesianIndex{2}) I = Index{Unknown}.(Tuple(i)) apply(L, v, I) end quadrature(L::Laplace) = Quadrature(L.op, L.grid) inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) """ Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} Implements the quadrature operator `H` of Dim dimension as a TensorMapping """ struct Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} op::D2{T,N,M,K} grid::EquidistantGrid{Dim,T} end export Quadrature LazyTensors.range_size(H::Quadrature{2}, domain_size::NTuple{2,Integer}) where T = size(H.grid) LazyTensors.domain_size(H::Quadrature{2}, range_size::NTuple{2,Integer}) where T = size(H.grid) # TODO: Dispatch on Tuple{Index{R1},Index{R2}}? @inline function LazyTensors.apply(H::Quadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer}) I = CartesianIndex(I); N = size(H.grid) # Quadrature in x direction @inbounds q = apply_quadrature(H.op, H.grid.spacing[1], v[I] , I[1], N[1]) # Quadrature in y-direction @inbounds q = apply_quadrature(H.op, H.grid.spacing[2], q, I[2], N[2]) return q end LazyTensors.apply_transpose(H::Quadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer}) = LazyTensors.apply(H,v,I) """ InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} Implements the inverse quadrature operator `inv(H)` of Dim dimension as a TensorMapping """ struct InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} op::D2{T,N,M,K} grid::EquidistantGrid{Dim,T} end export InverseQuadrature LazyTensors.range_size(H_inv::InverseQuadrature{2}, domain_size::NTuple{2,Integer}) where T = size(H_inv.grid) LazyTensors.domain_size(H_inv::InverseQuadrature{2}, range_size::NTuple{2,Integer}) where T = size(H_inv.grid) # TODO: Dispatch on Tuple{Index{R1},Index{R2}}? @inline function LazyTensors.apply(H_inv::InverseQuadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer}) I = CartesianIndex(I); N = size(H_inv.grid) # Inverse quadrature in x direction @inbounds q_inv = apply_inverse_quadrature(H_inv.op, H_inv.grid.inverse_spacing[1], v[I] , I[1], N[1]) # Inverse quadrature in y-direction @inbounds q_inv = apply_inverse_quadrature(H_inv.op, H_inv.grid.inverse_spacing[2], q_inv, I[2], N[2]) return q_inv end LazyTensors.apply_transpose(H_inv::InverseQuadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer}) = LazyTensors.apply(H_inv,v,I) """ BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1} Implements the boundary operator `e` as a TensorMapping """ struct BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1} op::D2{T,N,M,K} grid::EquidistantGrid{2} bId::CartesianBoundary end export BoundaryValue # TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue? # Can we give special treatment to TensorMappings that go to a higher dim? LazyTensors.range_size(e::BoundaryValue{T}, domain_size::NTuple{1,Integer}) where T = size(e.grid) LazyTensors.domain_size(e::BoundaryValue{T}, range_size::NTuple{2,Integer}) where T = (range_size[3-dim(e.bId)],) # TODO: Make this independent of dimension function LazyTensors.apply(e::BoundaryValue, v::AbstractArray, I::NTuple{2,Int}) i = I[dim(e.bId)] j = I[3-dim(e.bId)] N_i = size(e.grid)[dim(e.bId)] return apply_e(e.op, v[j], N_i, i, region(e.bId)) end function LazyTensors.apply_transpose(e::BoundaryValue, v::AbstractArray, I::NTuple{1,Int}) u = selectdim(v,3-dim(e.bId),I[1]) return apply_e_T(e.op, u, region(e.bId)) end """ NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} Implements the boundary operator `d` as a TensorMapping """ struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} op::D2{T,N,M,K} grid::EquidistantGrid{2} bId::CartesianBoundary end export NormalDerivative # TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue? # Can we give special treatment to TensorMappings that go to a higher dim? LazyTensors.range_size(e::NormalDerivative{T}, domain_size::NTuple{1,Integer}) where T = size(e.grid) LazyTensors.domain_size(e::NormalDerivative{T}, range_size::NTuple{2,Integer}) where T = (range_size[3-dim(e.bId)],) # TODO: Not type stable D:< # TODO: Make this independent of dimension function LazyTensors.apply(d::NormalDerivative, v::AbstractArray, I::NTuple{2,Int}) i = I[dim(d.bId)] j = I[3-dim(d.bId)] N_i = size(d.grid)[dim(d.bId)] h_inv = d.grid.inverse_spacing[dim(d.bId)] return apply_d(d.op, h_inv, v[j], N_i, i, region(d.bId)) end function LazyTensors.apply_transpose(d::NormalDerivative, v::AbstractArray, I::NTuple{1,Int}) u = selectdim(v,3-dim(d.bId),I[1]) return apply_d_T(d.op, d.grid.inverse_spacing[dim(d.bId)], u, region(d.bId)) end """ BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} Implements the boundary operator `q` as a TensorOperator """ struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} op::D2{T,N,M,K} grid::EquidistantGrid{2} bId::CartesianBoundary end export BoundaryQuadrature # TODO: Make this independent of dimension # TODO: Dispatch directly on Index{R}? function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Int}) where T h = q.grid.spacing[3-dim(q.bId)] N = size(v) return apply_quadrature(q.op, h, v[I[1]], I[1], N[1]) end LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Int}) where T = LazyTensors.apply(q,v,I) struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid} e = boundary_value(L.op, Bid()) d = normal_derivative(L.op, Bid()) Hᵧ = boundary_quadrature(L.op, Bid()) return -L.Hi*e*Hᵧ*(d'*v - g) # Need to handle d'*v - g so that it is an AbstractArray that TensorMappings can act on end struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition tau::Float64 end function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid} e = boundary_value(L.op, Bid()) d = normal_derivative(L.op, Bid()) Hᵧ = boundary_quadrature(L.op, Bid()) return -L.Hi*(tau/h*e + d)*Hᵧ*(e'*v - g) # Need to handle scalar multiplication and addition of TensorMapping end # function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D # return apply(s.L, v, i) + # sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) + # sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) + # sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) + # sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau), v, s.g_n, i) # end