Mercurial > repos > public > sbplib_julia
diff DiffOps/src/laplace.jl @ 262:f1e90a92ad74 boundary_conditions
Add Quadrature and InverseQuadrature for Laplace as TensorMappings. Implement and test the 2D case. Fix implementation of apply_transpose for BoundaryQuadrature and add tests.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 26 Nov 2019 08:28:26 -0800 |
parents | 5571d2c5bf0f |
children | 9ad447176ba1 |
line wrap: on
line diff
--- a/DiffOps/src/laplace.jl Tue Nov 26 08:19:22 2019 -0800 +++ b/DiffOps/src/laplace.jl Tue Nov 26 08:28:26 2019 -0800 @@ -31,10 +31,65 @@ apply(L, v, I) end +quadrature(L::Laplace) = Quadrature(L.op, L.grid) +inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) +""" + Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the quadrature operator `H` of Dim dimension as a TensorMapping +""" +struct Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + op::D2{T,N,M,K} + grid::EquidistantGrid{Dim,T} +end +export Quadrature + +LazyTensors.range_size(H::Quadrature{2}, domain_size::NTuple{2,Integer}) where T = size(H.grid) +LazyTensors.domain_size(H::Quadrature{2}, range_size::NTuple{2,Integer}) where T = size(H.grid) + +# TODO: Dispatch on Tuple{Index{R1},Index{R2}}? +@inline function LazyTensors.apply(H::Quadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer}) + I = CartesianIndex(I); + N = size(H.grid) + # Quadrature in x direction + @inbounds q = apply_quadrature(H.op, H.grid.spacing[1], v[I] , I[1], N[1]) + # Quadrature in y-direction + @inbounds q = apply_quadrature(H.op, H.grid.spacing[2], q, I[2], N[2]) + return q +end + +LazyTensors.apply_transpose(H::Quadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer}) = LazyTensors.apply(H,v,I) + +""" + InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the inverse quadrature operator `inv(H)` of Dim dimension as a TensorMapping +""" +struct InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + op::D2{T,N,M,K} + grid::EquidistantGrid{Dim,T} +end +export InverseQuadrature + +LazyTensors.range_size(H_inv::InverseQuadrature{2}, domain_size::NTuple{2,Integer}) where T = size(H_inv.grid) +LazyTensors.domain_size(H_inv::InverseQuadrature{2}, range_size::NTuple{2,Integer}) where T = size(H_inv.grid) + +# TODO: Dispatch on Tuple{Index{R1},Index{R2}}? +@inline function LazyTensors.apply(H_inv::InverseQuadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer}) + I = CartesianIndex(I); + N = size(H_inv.grid) + # Inverse quadrature in x direction + @inbounds q_inv = apply_inverse_quadrature(H_inv.op, H_inv.grid.inverse_spacing[1], v[I] , I[1], N[1]) + # Inverse quadrature in y-direction + @inbounds q_inv = apply_inverse_quadrature(H_inv.op, H_inv.grid.inverse_spacing[2], q_inv, I[2], N[2]) + return q_inv +end + +LazyTensors.apply_transpose(H_inv::InverseQuadrature{2}, v::AbstractArray{T,2} where T, I::NTuple{2,Integer}) = LazyTensors.apply(H_inv,v,I) """ BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1} @@ -66,8 +121,6 @@ return apply_e_T(e.op, u, region(e.bId)) end - - """ NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} @@ -113,13 +166,14 @@ export BoundaryQuadrature # TODO: Make this independent of dimension +# TODO: Dispatch directly on Index{R}? function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Int}) where T - h = spacing(q.grid)[3-dim(q.bId)] + h = q.grid.spacing[3-dim(q.bId)] N = size(v) return apply_quadrature(q.op, h, v[I[1]], I[1], N[1]) end -LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Int}) where T = apply(q,v,I) +LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Int}) where T = LazyTensors.apply(q,v,I)