Mercurial > repos > public > sbplib_julia
changeset 927:d360fc2d9620 feature/laplace_opset
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 21 Feb 2022 23:36:41 +0100 |
parents | 47425442bbc5 (current diff) de1625deb27e (diff) |
children | d83f685f1031 |
files | test/SbpOperators/boundaryops/normal_derivative_test.jl |
diffstat | 4 files changed, 105 insertions(+), 37 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Grids/EquidistantGrid.jl Mon Feb 21 23:33:29 2022 +0100 +++ b/src/Grids/EquidistantGrid.jl Mon Feb 21 23:36:41 2022 +0100 @@ -1,27 +1,23 @@ -""" - EquidistantGrid(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) - EquidistantGrid{T}() - -`EquidistantGrid` is a grid with equidistant grid spacing per coordinat direction. +export EquidistantGrid +export spacing +export inverse_spacing +export restrict +export boundary_identifiers +export boundary_grid +export refine +export coarsen -`EquidistantGrid(size, limit_lower, limit_upper)` construct the grid with the -domain defined by the two points P1, and P2 given by `limit_lower` and -`limit_upper`. The length of the domain sides are given by the components of -(P2-P1). E.g for a 2D grid with P1=(-1,0) and P2=(1,2) the domain is defined -as (-1,1)x(0,2). The side lengths of the grid are not allowed to be negative. -The number of equidistantly spaced points in each coordinate direction are given -by `size`. +""" + EquidistantGrid{Dim,T<:Real} <: AbstractGrid -`EquidistantGrid{T}()` constructs a 0-dimensional grid. - +`Dim`-dimensional equidistant grid with coordinates of type `T`. """ struct EquidistantGrid{Dim,T<:Real} <: AbstractGrid size::NTuple{Dim, Int} limit_lower::NTuple{Dim, T} limit_upper::NTuple{Dim, T} - # General constructor - function EquidistantGrid(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where Dim where T + function EquidistantGrid{Dim,T}(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where {Dim,T} if any(size .<= 0) throw(DomainError("all components of size must be postive")) end @@ -30,12 +26,31 @@ end return new{Dim,T}(size, limit_lower, limit_upper) end +end - # Specialized constructor for 0-dimensional grid - EquidistantGrid{T}() where T = new{0,T}((),(),()) +""" + EquidistantGrid(size, limit_lower, limit_upper) + +Construct an equidistant grid with corners at the coordinates `limit_lower` and +`limit_upper`. + +The length of the domain sides are given by the components of +`limit_upper-limit_lower`. E.g for a 2D grid with `limit_lower=(-1,0)` and `limit_upper=(1,2)` the domain is defined +as `(-1,1)x(0,2)`. The side lengths of the grid are not allowed to be negative. + +The number of equidistantly spaced points in each coordinate direction are given +by the tuple `size`. +""" +function EquidistantGrid(size, limit_lower, limit_upper) + return EquidistantGrid{length(size), eltype(limit_lower)}(size, limit_lower, limit_upper) end -export EquidistantGrid + +""" + EquidistantGrid{T}() +Constructs a 0-dimensional grid. +""" +EquidistantGrid{T}() where T = EquidistantGrid{0,T}((),(),()) # Convenience constructor for 0-dim grid """ EquidistantGrid(size::Int, limit_lower::T, limit_upper::T) @@ -62,18 +77,16 @@ """ spacing(grid::EquidistantGrid) -The spacing between the grid points of the grid. +The spacing between grid points. """ spacing(grid::EquidistantGrid) = (grid.limit_upper.-grid.limit_lower)./(grid.size.-1) -export spacing """ inverse_spacing(grid::EquidistantGrid) -The reciprocal of the spacing between the grid points of the grid. +The reciprocal of the spacing between grid points. """ inverse_spacing(grid::EquidistantGrid) = 1 ./ spacing(grid) -export inverse_spacing """ points(grid::EquidistantGrid) @@ -93,7 +106,7 @@ """ restrict(::EquidistantGrid, dim) -Pick out given dimensions from the grid and return a grid for them +Pick out given dimensions from the grid and return a grid for them. """ function restrict(grid::EquidistantGrid, dim) size = grid.size[dim] @@ -102,7 +115,6 @@ return EquidistantGrid(size, limit_lower, limit_upper) end -export restrict """ boundary_identifiers(::EquidistantGrid) @@ -114,7 +126,6 @@ ...) """ boundary_identifiers(g::EquidistantGrid) = (((ntuple(i->(CartesianBoundary{i,Lower}(),CartesianBoundary{i,Upper}()),dimension(g)))...)...,) -export boundary_identifiers """ @@ -133,5 +144,40 @@ end return restrict(grid,orth_dims) end -export boundary_grid boundary_grid(::EquidistantGrid{1,T},::CartesianBoundary{1}) where T = EquidistantGrid{T}() + + +""" + refine(grid::EquidistantGrid, r::Int) + +Refines `grid` by a factor `r`. The factor is applied to the number of +intervals which is 1 less than the size of the grid. + +See also: [`coarsen`](@ref) +""" +function refine(grid::EquidistantGrid, r::Int) + sz = size(grid) + new_sz = (sz .- 1).*r .+ 1 + return EquidistantGrid{dimension(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper) +end + +""" + coarsen(grid::EquidistantGrid, r::Int) + +Coarsens `grid` by a factor `r`. The factor is applied to the number of +intervals which is 1 less than the size of the grid. If the number of +intervals are not divisible by `r` an error is raised. + +See also: [`refine`](@ref) +""" +function coarsen(grid::EquidistantGrid, r::Int) + sz = size(grid) + + if !all(n -> (n % r == 0), sz.-1) + throw(DomainError(r, "Size minus 1 must be divisible by the ratio.")) + end + + new_sz = (sz .- 1).÷r .+ 1 + + return EquidistantGrid{dimension(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper) +end
--- a/src/SbpOperators/operators/standard_diagonal.toml Mon Feb 21 23:33:29 2022 +0100 +++ b/src/SbpOperators/operators/standard_diagonal.toml Mon Feb 21 23:36:41 2022 +0100 @@ -31,7 +31,7 @@ ] e.closure = ["1"] -d1.closure = {s = ["-3/2", "2", "-1/2"], c = 1} +d1.closure = {s = ["3/2", "-2", "1/2"], c = 1} [[stencil_set]] @@ -57,4 +57,4 @@ ] e.closure = ["1"] -d1.closure = {s = ["-11/6", "3", "-3/2", "1/3"], c = 1} +d1.closure = {s = ["11/6", "-3", "3/2", "-1/3"], c = 1}
--- a/test/Grids/EquidistantGrid_test.jl Mon Feb 21 23:33:29 2022 +0100 +++ b/test/Grids/EquidistantGrid_test.jl Mon Feb 21 23:36:41 2022 +0100 @@ -98,4 +98,26 @@ @test_throws DomainError boundary_grid(g,CartesianBoundary{4,Lower}()) end end + + @testset "refine" begin + @test refine(EquidistantGrid{Float64}(), 1) == EquidistantGrid{Float64}() + @test refine(EquidistantGrid{Float64}(), 2) == EquidistantGrid{Float64}() + + g = EquidistantGrid((10,5),(0.,1.),(2.,3.)) + @test refine(g, 1) == g + @test refine(g, 2) == EquidistantGrid((19,9),(0.,1.),(2.,3.)) + @test refine(g, 3) == EquidistantGrid((28,13),(0.,1.),(2.,3.)) + end + + @testset "coarsen" begin + @test coarsen(EquidistantGrid{Float64}(), 1) == EquidistantGrid{Float64}() + @test coarsen(EquidistantGrid{Float64}(), 2) == EquidistantGrid{Float64}() + + g = EquidistantGrid((7,13),(0.,1.),(2.,3.)) + @test coarsen(g, 1) == g + @test coarsen(g, 2) == EquidistantGrid((4,7),(0.,1.),(2.,3.)) + @test coarsen(g, 3) == EquidistantGrid((3,5),(0.,1.),(2.,3.)) + + @test_throws DomainError(4, "Size minus 1 must be divisible by the ratio.") coarsen(g, 4) == EquidistantGrid((3,5),(0.,1.),(2.,3.)) + end end
--- a/test/SbpOperators/boundaryops/normal_derivative_test.jl Mon Feb 21 23:33:29 2022 +0100 +++ b/test/SbpOperators/boundaryops/normal_derivative_test.jl Mon Feb 21 23:36:41 2022 +0100 @@ -41,10 +41,10 @@ (d_w, d_e, d_s, d_n) = map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D)) - @test d_w*v ≈ v∂x[1,:] atol = 1e-13 - @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 - @test d_s*v ≈ v∂y[:,1] atol = 1e-13 - @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 + @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 + @test d_e*v ≈ v∂x[end,:] atol = 1e-13 + @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 + @test d_n*v ≈ v∂y[:,end] atol = 1e-13 end @testset "4th order" begin @@ -53,10 +53,10 @@ (d_w, d_e, d_s, d_n) = map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D)) - @test d_w*v ≈ v∂x[1,:] atol = 1e-13 - @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 - @test d_s*v ≈ v∂y[:,1] atol = 1e-13 - @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 + @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 + @test d_e*v ≈ v∂x[end,:] atol = 1e-13 + @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 + @test d_n*v ≈ v∂y[:,end] atol = 1e-13 end end end