Mercurial > repos > public > sbplib_julia
changeset 927:d360fc2d9620 feature/laplace_opset
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 21 Feb 2022 23:36:41 +0100 |
parents | 47425442bbc5 (diff) de1625deb27e (current diff) |
children | d83f685f1031 |
files | test/SbpOperators/boundaryops/normal_derivative_test.jl |
diffstat | 13 files changed, 158 insertions(+), 89 deletions(-) [+] |
line wrap: on
line diff
--- a/Notes.md Mon Feb 21 10:38:19 2022 +0100 +++ b/Notes.md Mon Feb 21 23:36:41 2022 +0100 @@ -147,6 +147,7 @@ - [ ] How do we handle mixes of periodic and non-periodic grids? Seems it should be supported on the grid level and on the 1d operator level. Between there it should be transparent. - [ ] Can we have a trait to tell if a TensorMapping is transposable? - [ ] Is it ok to have "Constructors" for abstract types which create subtypes? For example a Grids() functions that gives different kind of grids based on input? + - [ ] Figure out how to treat the borrowing parameters of operators. Include in into the struct? Expose via function dispatched on the operator type and grid? ## Regions and tensormappings - [ ] Use a trait to indicate if a TensorMapping uses indices with regions.
--- a/src/Grids/AbstractGrid.jl Mon Feb 21 10:38:19 2022 +0100 +++ b/src/Grids/AbstractGrid.jl Mon Feb 21 23:36:41 2022 +0100 @@ -7,7 +7,7 @@ """ abstract type AbstractGrid end - +export AbstractGrid function dimension end function points end export dimension, points
--- a/src/SbpOperators/SbpOperators.jl Mon Feb 21 10:38:19 2022 +0100 +++ b/src/SbpOperators/SbpOperators.jl Mon Feb 21 23:36:41 2022 +0100 @@ -21,4 +21,14 @@ include("boundaryops/boundary_restriction.jl") include("boundaryops/normal_derivative.jl") + +export boundary_quadrature +export boundary_restriction +export inner_product +export inverse_inner_product +export Laplace +export laplace +export normal_derivative +export second_derivative + end # module
--- a/src/SbpOperators/boundaryops/boundary_restriction.jl Mon Feb 21 10:38:19 2022 +0100 +++ b/src/SbpOperators/boundaryops/boundary_restriction.jl Mon Feb 21 23:36:41 2022 +0100 @@ -1,18 +1,22 @@ """ - boundary_restriction(grid::EquidistantGrid, closure_stencil::Stencil, boundary::CartesianBoundary) - boundary_restriction(grid::EquidistantGrid{1}, closure_stencil::Stencil, region::Region) + boundary_restriction(grid, closure_stencil::Stencil, boundary) -Creates the boundary restriction operator `e` as a `TensorMapping` +Creates boundary restriction operators `e` as `TensorMapping`s on `boundary` -`e` is the restriction of a grid function to the boundary specified by `boundary` or `region` using some `closure_stencil`. -`e'` is the prolongation of a grid function on the boundary to the whole grid using the same `closure_stencil`. +`e` is the restriction of a grid function to `boundary` using a `Stencil` `closure_stencil`. +`e'` is the prolongation of a grid function on `boundary`` to the whole grid using the same `closure_stencil`. On a one-dimensional `grid`, `e` is a `BoundaryOperator`. On a multi-dimensional `grid`, `e` is the inflation of -a `BoundaryOperator`. Also see the documentation of `SbpOperators.boundary_operator(...)` for more details. +a `BoundaryOperator`. See also [`SbpOperators.boundary_operator`](@ref). """ -function boundary_restriction(grid::EquidistantGrid, closure_stencil, boundary::CartesianBoundary) +function boundary_restriction(grid, closure_stencil::Stencil, boundary) converted_stencil = convert(Stencil{eltype(grid)}, closure_stencil) return SbpOperators.boundary_operator(grid, converted_stencil, boundary) end -boundary_restriction(grid::EquidistantGrid{1}, closure_stencil, region::Region) = boundary_restriction(grid, closure_stencil, CartesianBoundary{1,typeof(region)}()) + +""" + boundary_restriction(grid, stencil_set, boundary) -export boundary_restriction +Creates a `boundary_restriction` operator on `grid` given a parsed TOML +`stencil_set`. +""" +boundary_restriction(grid, stencil_set, boundary) = boundary_restriction(grid, parse_stencil(stencil_set["e"]["closure"]), boundary)
--- a/src/SbpOperators/boundaryops/normal_derivative.jl Mon Feb 21 10:38:19 2022 +0100 +++ b/src/SbpOperators/boundaryops/normal_derivative.jl Mon Feb 21 23:36:41 2022 +0100 @@ -1,18 +1,23 @@ """ - normal_derivative(grid::EquidistantGrid, closure_stencil::Stencil, boundary::CartesianBoundary) - normal_derivative(grid::EquidistantGrid{1}, closure_stencil::Stencil, region::Region) + normal_derivative(grid, closure_stencil::Stencil, boundary) Creates the normal derivative boundary operator `d` as a `TensorMapping` -`d` is the normal derivative of a grid function at the boundary specified by `boundary` or `region` using some `closure_stencil`. +`d` computes the normal derivative of a grid function on `boundary` a `Stencil` `closure_stencil`. `d'` is the prolongation of the normal derivative of a grid function to the whole grid using the same `closure_stencil`. On a one-dimensional `grid`, `d` is a `BoundaryOperator`. On a multi-dimensional `grid`, `d` is the inflation of -a `BoundaryOperator`. Also see the documentation of `SbpOperators.boundary_operator(...)` for more details. +a `BoundaryOperator`. See also [`SbpOperators.boundary_operator`](@ref). """ -function normal_derivative(grid::EquidistantGrid, closure_stencil, boundary::CartesianBoundary) +function normal_derivative(grid, closure_stencil::Stencil, boundary) direction = dim(boundary) h_inv = inverse_spacing(grid)[direction] return SbpOperators.boundary_operator(grid, scale(closure_stencil,h_inv), boundary) end -normal_derivative(grid::EquidistantGrid{1}, closure_stencil, region::Region) = normal_derivative(grid, closure_stencil, CartesianBoundary{1,typeof(region)}()) -export normal_derivative + +""" + normal_derivative(grid, stencil_set, boundary) + +Creates a `normal_derivative` operator on `grid` given a parsed TOML +`stencil_set`. +""" +normal_derivative(grid, stencil_set, boundary) = normal_derivative(grid, parse_stencil(stencil_set["e"]["closure"]), boundary)
--- a/src/SbpOperators/volumeops/derivatives/second_derivative.jl Mon Feb 21 10:38:19 2022 +0100 +++ b/src/SbpOperators/volumeops/derivatives/second_derivative.jl Mon Feb 21 23:36:41 2022 +0100 @@ -16,4 +16,3 @@ return SbpOperators.volume_operator(grid, scale(inner_stencil,h_inv^2), scale.(closure_stencils,h_inv^2), even, direction) end second_derivative(grid::EquidistantGrid{1}, inner_stencil, closure_stencils) = second_derivative(grid,inner_stencil,closure_stencils,1) -export second_derivative
--- a/src/SbpOperators/volumeops/inner_products/inner_product.jl Mon Feb 21 10:38:19 2022 +0100 +++ b/src/SbpOperators/volumeops/inner_products/inner_product.jl Mon Feb 21 23:36:41 2022 +0100 @@ -10,8 +10,8 @@ On a 1-dimensional grid, `H` is a `ConstantInteriorScalingOperator`. On a N-dimensional grid, `H` is the outer product of the 1-dimensional inner -product operators for each coordinate direction. Also see the documentation of -On a 0-dimensional grid, `H` is a 0-dimensional `IdentityMapping`. +product operators for each coordinate direction. On a 0-dimensional grid, +`H` is a 0-dimensional `IdentityMapping`. """ function inner_product(grid::EquidistantGrid, interior_weight, closure_weights) Hs = () @@ -22,7 +22,6 @@ return foldl(⊗, Hs) end -export inner_product function inner_product(grid::EquidistantGrid{1}, interior_weight, closure_weights) h = spacing(grid)[1] @@ -32,3 +31,15 @@ end inner_product(grid::EquidistantGrid{0}, interior_weight, closure_weights) = IdentityMapping{eltype(grid)}() + +""" + inner_product(grid, stencil_set) + +Creates a `inner_product` operator on `grid` given a parsed TOML +`stencil_set`. +""" +function inner_product(grid, stencil_set) + inner_stencil = parse_scalar(stencil_set["H"]["inner"]) + closure_stencils = parse_tuple(stencil_set["H"]["closure"]) + return inner_product(grid, inner_stencil, closure_stencils) +end \ No newline at end of file
--- a/src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl Mon Feb 21 10:38:19 2022 +0100 +++ b/src/SbpOperators/volumeops/inner_products/inverse_inner_product.jl Mon Feb 21 23:36:41 2022 +0100 @@ -25,6 +25,17 @@ H⁻¹ = SbpOperators.ConstantInteriorScalingOperator(grid, h⁻¹*1/interior_weight, h⁻¹./closure_weights) return H⁻¹ end -export inverse_inner_product inverse_inner_product(grid::EquidistantGrid{0}, interior_weight, closure_weights) = IdentityMapping{eltype(grid)}() + +""" + inverse_inner_product(grid, stencil_set) + +Creates a `inverse_inner_product` operator on `grid` given a parsed TOML +`stencil_set`. +""" +function inverse_inner_product(grid, stencil_set) + inner_stencil = parse_scalar(stencil_set["H"]["inner"]) + closure_stencils = parse_tuple(stencil_set["H"]["closure"]) + return inverse_inner_product(grid, inner_stencil, closure_stencils) +end \ No newline at end of file
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Mon Feb 21 10:38:19 2022 +0100 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Mon Feb 21 23:36:41 2022 +0100 @@ -1,5 +1,37 @@ """ - laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) + Laplace{T, Dim, DiffOp} <: TensorMapping{T, Dim, Dim} + +Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a +`TensorMapping`. Additionally `Laplace` stores the stencil set (parsed from TOML) +used to construct the `TensorMapping`. +""" +struct Laplace{T, Dim, DiffOp<:TensorMapping{T, Dim, Dim}} <: TensorMapping{T, Dim, Dim} + D::DiffOp# Differential operator + stencil_set # Stencil set of the operator +end + +""" + `Laplace(grid::Equidistant, stencil_set)` + +Creates the `Laplace`` operator `Δ` on `grid` given a parsed TOML +`stencil_set`. See also [`laplace`](@ref). +""" +function Laplace(grid::EquidistantGrid, stencil_set) + inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) + closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) + Δ = laplace(grid, inner_stencil,closure_stencils) + return Laplace(Δ,stencil_set) +end + +LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) +LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) +LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) + +# TODO: Implement pretty printing of Laplace once pretty printing of TensorMappings is implemented. +# Base.show(io::IO, L::Laplace) = ... + +""" + laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) Creates the Laplace operator operator `Δ` as a `TensorMapping` @@ -9,7 +41,7 @@ On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s -where the sum is carried out lazily. +where the sum is carried out lazily. See also [`second_derivative`](@ref). """ function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) Δ = second_derivative(grid, inner_stencil, closure_stencils, 1) @@ -17,5 +49,4 @@ Δ += second_derivative(grid, inner_stencil, closure_stencils, d) end return Δ -end -export laplace +end \ No newline at end of file
--- a/test/SbpOperators/boundaryops/boundary_operator_test.jl Mon Feb 21 10:38:19 2022 +0100 +++ b/test/SbpOperators/boundaryops/boundary_operator_test.jl Mon Feb 21 23:36:41 2022 +0100 @@ -32,14 +32,8 @@ @test e_w isa TensorMapping{T,1,2} where T end end - - op_l = boundary_operator(g_1D, closure_stencil, CartesianBoundary{1,Lower}()) - op_r = boundary_operator(g_1D, closure_stencil, CartesianBoundary{1,Upper}()) - - op_w = boundary_operator(g_2D, closure_stencil, CartesianBoundary{1,Lower}()) - op_e = boundary_operator(g_2D, closure_stencil, CartesianBoundary{1,Upper}()) - op_s = boundary_operator(g_2D, closure_stencil, CartesianBoundary{2,Lower}()) - op_n = boundary_operator(g_2D, closure_stencil, CartesianBoundary{2,Upper}()) + (op_l, op_r) = map(id -> boundary_operator(g_1D, closure_stencil, id), boundary_identifiers(g_1D)) + (op_w, op_e, op_s, op_n) = map(id -> boundary_operator(g_2D, closure_stencil, id), boundary_identifiers(g_2D)) @testset "Sizes" begin @testset "1D" begin
--- a/test/SbpOperators/boundaryops/boundary_restriction_test.jl Mon Feb 21 10:38:19 2022 +0100 +++ b/test/SbpOperators/boundaryops/boundary_restriction_test.jl Mon Feb 21 23:36:41 2022 +0100 @@ -2,7 +2,6 @@ using Sbplib.SbpOperators using Sbplib.Grids -using Sbplib.RegionIndices using Sbplib.LazyTensors import Sbplib.SbpOperators.BoundaryOperator @@ -15,14 +14,12 @@ @testset "boundary_restriction" begin @testset "1D" begin - e_l = boundary_restriction(g_1D,e_closure,Lower()) - @test e_l == boundary_restriction(g_1D,e_closure,CartesianBoundary{1,Lower}()) + e_l = boundary_restriction(g_1D,e_closure,CartesianBoundary{1,Lower}()) @test e_l == BoundaryOperator(g_1D,Stencil{Float64}(e_closure),Lower()) @test e_l isa BoundaryOperator{T,Lower} where T @test e_l isa TensorMapping{T,0,1} where T - e_r = boundary_restriction(g_1D,e_closure,Upper()) - @test e_r == boundary_restriction(g_1D,e_closure,CartesianBoundary{1,Upper}()) + e_r = boundary_restriction(g_1D,e_closure,CartesianBoundary{1,Upper}()) @test e_r == BoundaryOperator(g_1D,Stencil{Float64}(e_closure),Upper()) @test e_r isa BoundaryOperator{T,Upper} where T @test e_r isa TensorMapping{T,0,1} where T @@ -37,8 +34,8 @@ @testset "Application" begin @testset "1D" begin - e_l = boundary_restriction(g_1D, e_closure, CartesianBoundary{1,Lower}()) - e_r = boundary_restriction(g_1D, e_closure, CartesianBoundary{1,Upper}()) + (e_l, e_r) = + map(id -> boundary_restriction(g_1D, e_closure, id), boundary_identifiers(g_1D)) v = evalOn(g_1D,x->1+x^2) u = fill(3.124) @@ -49,10 +46,8 @@ end @testset "2D" begin - e_w = boundary_restriction(g_2D, e_closure, CartesianBoundary{1,Lower}()) - e_e = boundary_restriction(g_2D, e_closure, CartesianBoundary{1,Upper}()) - e_s = boundary_restriction(g_2D, e_closure, CartesianBoundary{2,Lower}()) - e_n = boundary_restriction(g_2D, e_closure, CartesianBoundary{2,Upper}()) + (e_w, e_e, e_s, e_n) = + map(id -> boundary_restriction(g_2D, e_closure, id), boundary_identifiers(g_2D)) v = rand(11, 15) u = fill(3.124)
--- a/test/SbpOperators/boundaryops/normal_derivative_test.jl Mon Feb 21 10:38:19 2022 +0100 +++ b/test/SbpOperators/boundaryops/normal_derivative_test.jl Mon Feb 21 23:36:41 2022 +0100 @@ -2,7 +2,6 @@ using Sbplib.SbpOperators using Sbplib.Grids -using Sbplib.RegionIndices using Sbplib.LazyTensors import Sbplib.SbpOperators.BoundaryOperator @@ -14,8 +13,7 @@ stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) d_closure = parse_stencil(stencil_set["d1"]["closure"]) @testset "1D" begin - d_l = normal_derivative(g_1D, d_closure, Lower()) - @test d_l == normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) + d_l = normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) @test d_l isa BoundaryOperator{T,Lower} where T @test d_l isa TensorMapping{T,0,1} where T end @@ -24,8 +22,8 @@ d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) Ix = IdentityMapping{Float64}((size(g_2D)[1],)) Iy = IdentityMapping{Float64}((size(g_2D)[2],)) - d_l = normal_derivative(restrict(g_2D,1),d_closure,Lower()) - d_r = normal_derivative(restrict(g_2D,2),d_closure,Upper()) + d_l = normal_derivative(restrict(g_2D,1),d_closure,CartesianBoundary{1,Lower}()) + d_r = normal_derivative(restrict(g_2D,2),d_closure,CartesianBoundary{1,Upper}()) @test d_w == d_l⊗Iy @test d_n == Ix⊗d_r @test d_w isa TensorMapping{T,1,2} where T @@ -40,10 +38,8 @@ @testset "2nd order" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) d_closure = parse_stencil(stencil_set["d1"]["closure"]) - d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) - d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) - d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) - d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) + (d_w, d_e, d_s, d_n) = + map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D)) @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 @@ -54,10 +50,8 @@ @testset "4th order" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) d_closure = parse_stencil(stencil_set["d1"]["closure"]) - d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) - d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) - d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) - d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) + (d_w, d_e, d_s, d_n) = + map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D)) @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 @test d_e*v ≈ v∂x[end,:] atol = 1e-13
--- a/test/SbpOperators/volumeops/laplace/laplace_test.jl Mon Feb 21 10:38:19 2022 +0100 +++ b/test/SbpOperators/volumeops/laplace/laplace_test.jl Mon Feb 21 23:36:41 2022 +0100 @@ -4,25 +4,25 @@ using Sbplib.Grids using Sbplib.LazyTensors +# Default stencils (4th order) +operator_path = sbp_operators_path()*"standard_diagonal.toml" +stencil_set = read_stencil_set(operator_path; order=4) +inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) +closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) +g_1D = EquidistantGrid(101, 0.0, 1.) +g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) + @testset "Laplace" begin - g_1D = EquidistantGrid(101, 0.0, 1.) - g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) @testset "Constructors" begin - stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) - inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) - closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) @testset "1D" begin - L = laplace(g_1D, inner_stencil, closure_stencils) - @test L == second_derivative(g_1D, inner_stencil, closure_stencils) - @test L isa TensorMapping{T,1,1} where T + Δ = laplace(g_1D, inner_stencil, closure_stencils) + @test Laplace(g_1D, stencil_set) == Laplace(Δ, stencil_set) + @test Laplace(g_1D, stencil_set) isa TensorMapping{T,1,1} where T end @testset "3D" begin - L = laplace(g_3D, inner_stencil, closure_stencils) - @test L isa TensorMapping{T,3,3} where T - Dxx = second_derivative(g_3D, inner_stencil, closure_stencils, 1) - Dyy = second_derivative(g_3D, inner_stencil, closure_stencils, 2) - Dzz = second_derivative(g_3D, inner_stencil, closure_stencils, 3) - @test L == Dxx + Dyy + Dzz + Δ = laplace(g_3D, inner_stencil, closure_stencils) + @test Laplace(g_3D, stencil_set) == Laplace(Δ,stencil_set) + @test Laplace(g_3D, stencil_set) isa TensorMapping{T,3,3} where T end end @@ -42,30 +42,44 @@ # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @testset "2nd order" begin - stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) - inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) - closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) - L = laplace(g_3D, inner_stencil, closure_stencils) - @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 - @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 - @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 - @test L*v ≈ Δv rtol = 5e-2 norm = l2 + stencil_set = read_stencil_set(operator_path; order=2) + Δ = Laplace(g_3D, stencil_set) + @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 + @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 + @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9 + @test Δ*v ≈ Δv rtol = 5e-2 norm = l2 end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. @testset "4th order" begin - stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) - inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) - closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) - L = laplace(g_3D, inner_stencil, closure_stencils) + stencil_set = read_stencil_set(operator_path; order=4) + Δ = Laplace(g_3D, stencil_set) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? - @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 - @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 - @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 - @test L*polynomials[4] ≈ polynomials[2] atol = 5e-9 - @test L*v ≈ Δv rtol = 5e-4 norm = l2 + @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 + @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 + @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9 + @test Δ*polynomials[4] ≈ polynomials[2] atol = 5e-9 + @test Δ*v ≈ Δv rtol = 5e-4 norm = l2 end end end + +@testset "laplace" begin + @testset "1D" begin + Δ = laplace(g_1D, inner_stencil, closure_stencils) + @test Δ == second_derivative(g_1D, inner_stencil, closure_stencils) + @test Δ isa TensorMapping{T,1,1} where T + end + @testset "3D" begin + Δ = laplace(g_3D, inner_stencil, closure_stencils) + @test Δ isa TensorMapping{T,3,3} where T + Dxx = second_derivative(g_3D, inner_stencil, closure_stencils, 1) + Dyy = second_derivative(g_3D, inner_stencil, closure_stencils, 2) + Dzz = second_derivative(g_3D, inner_stencil, closure_stencils, 3) + @test Δ == Dxx + Dyy + Dzz + @test Δ isa TensorMapping{T,3,3} where T + end +end +