Mercurial > repos > public > sbplib_julia
changeset 328:9cc5d1498b2d
Refactor 1D diagonal inner product in quadrature.jl to separate file. Write tests for quadratures. Clean up laplace and secondderivative
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 24 Sep 2020 22:31:48 +0200 |
parents | 802edc9f252e |
children | 408c37b295c2 |
files | SbpOperators/src/InverseQuadrature.jl SbpOperators/src/SbpOperators.jl SbpOperators/src/laplace/laplace.jl SbpOperators/src/laplace/secondderivative.jl SbpOperators/src/quadrature/diagonal_inner_product.jl SbpOperators/src/quadrature/quadrature.jl SbpOperators/test/runtests.jl |
diffstat | 7 files changed, 95 insertions(+), 84 deletions(-) [+] |
line wrap: on
line diff
--- a/SbpOperators/src/InverseQuadrature.jl Thu Sep 24 21:42:54 2020 +0200 +++ b/SbpOperators/src/InverseQuadrature.jl Thu Sep 24 22:31:48 2020 +0200 @@ -34,9 +34,9 @@ end """ - InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} -Implements the quadrature operator `Hi` of Dim dimension as a TensorMapping +Implements the inverse diagnoal norm operator `Hi` of Dim dimension as a TensorMapping """ export InverseDiagonalNorm, closuresize struct InverseDiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1}
--- a/SbpOperators/src/SbpOperators.jl Thu Sep 24 21:42:54 2020 +0200 +++ b/SbpOperators/src/SbpOperators.jl Thu Sep 24 22:31:48 2020 +0200 @@ -9,4 +9,6 @@ include("readoperator.jl") include("laplace/secondderivative.jl") include("laplace/laplace.jl") +include("quadrature/diagonal_inner_product.jl") +include("quadrature/quadrature.jl") end # module
--- a/SbpOperators/src/laplace/laplace.jl Thu Sep 24 21:42:54 2020 +0200 +++ b/SbpOperators/src/laplace/laplace.jl Thu Sep 24 22:31:48 2020 +0200 @@ -12,7 +12,7 @@ #TODO: Write a good constructor end -LazyTensors.domain_size(H::Laplace{Dim}, range_size::NTuple{Dim,Integer}) where {Dim} = range_size +LazyTensors.domain_size(L::Laplace{Dim}, range_size::NTuple{Dim,Integer}) where {Dim} = range_size function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} error("not implemented") @@ -24,8 +24,7 @@ return u end -# TODO: Fix dispatch on tuples! -@inline function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T +function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T # 2nd x-derivative @inbounds vx = view(v, :, Int(J)) @inbounds uᵢ = LazyTensors.apply(L.D2[1], vx , I) @@ -37,9 +36,7 @@ return uᵢ end -@inline function LazyTensors.apply_transpose(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} - return LazyTensors.apply(L, v, I) -end +LazyTensors.apply_transpose(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} = LazyTensors.apply(L, v, I...) # quadrature(L::Laplace) = Quadrature(L.op, L.grid) # inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid)
--- a/SbpOperators/src/laplace/secondderivative.jl Thu Sep 24 21:42:54 2020 +0200 +++ b/SbpOperators/src/laplace/secondderivative.jl Thu Sep 24 22:31:48 2020 +0200 @@ -20,32 +20,26 @@ # I thought I::Vararg{Index,R} fell back to just Index for R = 1 # Apply for different regions Lower/Interior/Upper or Unknown region -@inline function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Lower}) where T +function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Lower}) where T return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.closureStencils[Int(I)], v, Int(I)) end -@inline function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Interior}) where T +function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Interior}) where T return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.innerStencil, v, Int(I)) end -@inline function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Upper}) where T +function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Upper}) where T N = length(v) # TODO: Use domain_size here instead? N = domain_size(D2,size(v)) return @inbounds D2.h_inv*D2.h_inv*Int(D2.parity)*apply_stencil_backwards(D2.closureStencils[N-Int(I)+1], v, Int(I)) end -@inline function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, index::Index{Unknown}) where T +function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, index::Index{Unknown}) where T N = length(v) # TODO: Use domain_size here instead? r = getregion(Int(index), closuresize(D2), N) I = Index(Int(index), r) return LazyTensors.apply(D2, v, I) end - -@inline function LazyTensors.apply_transpose(D2::SecondDerivative, v::AbstractVector, I::Index) - return LazyTensors.apply(D2, v, I) -end +LazyTensors.apply_transpose(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index) where {T} = LazyTensors.apply(D2, v, I) - -function closuresize(D2::SecondDerivative{T,N,M,K}) where {T<:Real,N,M,K} - return M -end +closuresize(D2::SecondDerivative{T,N,M,K}) where {T<:Real,N,M,K} = M
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SbpOperators/src/quadrature/diagonal_inner_product.jl Thu Sep 24 22:31:48 2020 +0200 @@ -0,0 +1,41 @@ +export DiagonalInnerProduct, closuresize +""" + DiagonalInnerProduct{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the diagnoal norm operator `H` of Dim dimension as a TensorMapping +""" +struct DiagonalInnerProduct{T,M} <: TensorOperator{T,1} + h::T # The grid spacing could be included in the stencil already. Preferable? + closure::NTuple{M,T} + #TODO: Write a nice constructor +end + +LazyTensors.domain_size(H::DiagonalInnerProduct, range_size::NTuple{1,Integer}) = range_size + +function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index) where T + return @inbounds apply(H, v, I) +end + +function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Lower}) where T + return @inbounds H.h*H.closure[Int(I)]*v[Int(I)] +end + +function LazyTensors.apply(H::DiagonalInnerProduct{T},v::AbstractVector{T}, I::Index{Upper}) where T + N = length(v); + return @inbounds H.h*H.closure[N-Int(I)+1]v[Int(I)] +end + +function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index{Interior}) where T + return @inbounds H.h*v[Int(I)] +end + +function LazyTensors.apply(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, index::Index{Unknown}) where T + N = length(v); + r = getregion(Int(index), closuresize(H), N) + i = Index(Int(index), r) + return LazyTensors.apply(H, v, i) +end + +LazyTensors.apply_transpose(H::DiagonalInnerProduct{T}, v::AbstractVector{T}, I::Index) where T = LazyTensors.apply(H,v,I) + +closuresize(H::DiagonalInnerProduct{T,M}) where {T,M} = M
--- a/SbpOperators/src/quadrature/quadrature.jl Thu Sep 24 21:42:54 2020 +0200 +++ b/SbpOperators/src/quadrature/quadrature.jl Thu Sep 24 22:31:48 2020 +0200 @@ -1,30 +1,27 @@ -# At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings +export Quadrature """ Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} Implements the quadrature operator `Q` of Dim dimension as a TensorMapping -The multi-dimensional tensor operator consists of a tuple of 1D DiagonalNorm H +The multi-dimensional tensor operator consists of a tuple of 1D DiagonalInnerProduct H tensor operators. """ -export Quadrature -struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} - H::NTuple{Dim,DiagonalNorm{T,N,M}} +struct Quadrature{Dim,T<:Real,M} <: TensorOperator{T,Dim} + H::NTuple{Dim,DiagonalInnerProduct{T,M}} end -LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size +LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where {Dim} = range_size function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} error("not implemented") end -LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I) - -@inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T +function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T @inbounds q = apply(Q.H[1], v , I) return q end -@inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T +function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T # Quadrature in x direction @inbounds vx = view(v, :, Int(J)) @inbounds qx = apply(Q.H[1], vx , I) @@ -34,43 +31,4 @@ return qx*qy end -""" - DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} - -Implements the diagnoal norm operator `H` of Dim dimension as a TensorMapping -""" -export DiagonalNorm, closuresize, LazyTensors.apply -struct DiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} - h::T # The grid spacing could be included in the stencil already. Preferable? - closure::NTuple{M,T} - #TODO: Write a nice constructor -end - -@inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::Index) where T - return @inbounds apply(H, v, I) -end - -LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::Index) where T = LazyTensors.apply(H,v,I) - -@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Lower}) where T - return @inbounds H.h*H.closure[Int(I)]*v[Int(I)] -end -@inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, I::Index{Upper}) where T - N = length(v); - return @inbounds H.h*H.closure[N-Int(I)+1]v[Int(I)] -end - -@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Interior}) where T - return @inbounds H.h*v[Int(I)] -end - -function LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T - N = length(v); - r = getregion(Int(index), closuresize(H), N) - i = Index(Int(index), r) - return LazyTensors.apply(H, v, i) -end - -function closuresize(H::DiagonalNorm{T<:Real,N,M}) where {T,N,M} - return M -end +LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I...)
--- a/SbpOperators/test/runtests.jl Thu Sep 24 21:42:54 2020 +0200 +++ b/SbpOperators/test/runtests.jl Thu Sep 24 22:31:48 2020 +0200 @@ -119,20 +119,39 @@ @test sqrt(prod(h)*sum(collect(e4.^2))) <= accuracytol @test sqrt(prod(h)*sum(collect(e5.^2))) <= accuracytol end -# -# @testset "Quadrature" begin -# op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") -# Lx = 2.3 -# Ly = 5.2 -# g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) -# H = Quadrature(op,g) -# v = ones(Float64, size(g)) -# -# @test H isa TensorOperator{T,2} where T -# @test H' isa TensorMapping{T,2,2} where T -# @test sum(collect(H*v)) ≈ (Lx*Ly) -# @test collect(H*v) == collect(H'*v) -# end + +@testset "DiagonalInnerProduct" begin + op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + L = 2.3 + g = EquidistantGrid((77,), (0.0,), (L,)) + h = spacing(g) + H = DiagonalInnerProduct(h[1],op.quadratureClosure) + v = ones(Float64, size(g)) + + @test H isa TensorOperator{T,1} where T + @test H' isa TensorMapping{T,1,1} where T + @test sum(collect(H*v)) ≈ L + @test collect(H*v) == collect(H'*v) +end + +@testset "Quadrature" begin + op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + Lx = 2.3 + Ly = 5.2 + g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) + + h = spacing(g) + Hx = DiagonalInnerProduct(h[1],op.quadratureClosure); + Hy = DiagonalInnerProduct(h[2],op.quadratureClosure); + Q = Quadrature((Hx,Hy)) + + v = ones(Float64, size(g)) + + @test Q isa TensorOperator{T,2} where T + @test Q' isa TensorMapping{T,2,2} where T + @test sum(collect(Q*v)) ≈ (Lx*Ly) + @test collect(Q*v) == collect(Q'*v) +end # # @testset "InverseQuadrature" begin # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")