Mercurial > repos > public > sbplib_julia
view SbpOperators/src/quadrature/quadrature.jl @ 328:9cc5d1498b2d
Refactor 1D diagonal inner product in quadrature.jl to separate file. Write tests for quadratures. Clean up laplace and secondderivative
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 24 Sep 2020 22:31:48 +0200 |
parents | 802edc9f252e |
children |
line wrap: on
line source
export Quadrature """ Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} Implements the quadrature operator `Q` of Dim dimension as a TensorMapping The multi-dimensional tensor operator consists of a tuple of 1D DiagonalInnerProduct H tensor operators. """ struct Quadrature{Dim,T<:Real,M} <: TensorOperator{T,Dim} H::NTuple{Dim,DiagonalInnerProduct{T,M}} end LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where {Dim} = range_size function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} error("not implemented") end function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T @inbounds q = apply(Q.H[1], v , I) return q end function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T # Quadrature in x direction @inbounds vx = view(v, :, Int(J)) @inbounds qx = apply(Q.H[1], vx , I) # Quadrature in y-direction @inbounds vy = view(v, Int(I), :) @inbounds qy = apply(Q.H[2], vy, J) return qx*qy end LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I...)