view SbpOperators/src/quadrature/quadrature.jl @ 328:9cc5d1498b2d

Refactor 1D diagonal inner product in quadrature.jl to separate file. Write tests for quadratures. Clean up laplace and secondderivative
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 24 Sep 2020 22:31:48 +0200
parents 802edc9f252e
children
line wrap: on
line source

export Quadrature
"""
    Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}

Implements the quadrature operator `Q` of Dim dimension as a TensorMapping
The multi-dimensional tensor operator consists of a tuple of 1D DiagonalInnerProduct H
tensor operators.
"""
struct Quadrature{Dim,T<:Real,M} <: TensorOperator{T,Dim}
    H::NTuple{Dim,DiagonalInnerProduct{T,M}}
end

LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where {Dim} = range_size

function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim}
    error("not implemented")
end

function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T
    @inbounds q = apply(Q.H[1], v , I)
    return q
end

function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T
    # Quadrature in x direction
    @inbounds vx = view(v, :, Int(J))
    @inbounds qx = apply(Q.H[1], vx , I)
    # Quadrature in y-direction
    @inbounds vy = view(v, Int(I), :)
    @inbounds qy = apply(Q.H[2], vy, J)
    return qx*qy
end

LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I...)