diff SbpOperators/src/quadrature/quadrature.jl @ 328:9cc5d1498b2d

Refactor 1D diagonal inner product in quadrature.jl to separate file. Write tests for quadratures. Clean up laplace and secondderivative
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 24 Sep 2020 22:31:48 +0200
parents 802edc9f252e
children
line wrap: on
line diff
--- a/SbpOperators/src/quadrature/quadrature.jl	Thu Sep 24 21:42:54 2020 +0200
+++ b/SbpOperators/src/quadrature/quadrature.jl	Thu Sep 24 22:31:48 2020 +0200
@@ -1,30 +1,27 @@
-# At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings
+export Quadrature
 """
     Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
 
 Implements the quadrature operator `Q` of Dim dimension as a TensorMapping
-The multi-dimensional tensor operator consists of a tuple of 1D DiagonalNorm H
+The multi-dimensional tensor operator consists of a tuple of 1D DiagonalInnerProduct H
 tensor operators.
 """
-export Quadrature
-struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim}
-    H::NTuple{Dim,DiagonalNorm{T,N,M}}
+struct Quadrature{Dim,T<:Real,M} <: TensorOperator{T,Dim}
+    H::NTuple{Dim,DiagonalInnerProduct{T,M}}
 end
 
-LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size
+LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where {Dim} = range_size
 
 function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim}
     error("not implemented")
 end
 
-LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I)
-
-@inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T
+function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T
     @inbounds q = apply(Q.H[1], v , I)
     return q
 end
 
-@inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T
+function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T
     # Quadrature in x direction
     @inbounds vx = view(v, :, Int(J))
     @inbounds qx = apply(Q.H[1], vx , I)
@@ -34,43 +31,4 @@
     return qx*qy
 end
 
-"""
-    DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
-
-Implements the diagnoal norm operator `H` of Dim dimension as a TensorMapping
-"""
-export DiagonalNorm, closuresize, LazyTensors.apply
-struct DiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1}
-    h::T # The grid spacing could be included in the stencil already. Preferable?
-    closure::NTuple{M,T}
-    #TODO: Write a nice constructor
-end
-
-@inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::Index) where T
-    return @inbounds apply(H, v, I)
-end
-
-LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::Index) where T = LazyTensors.apply(H,v,I)
-
-@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Lower}) where T
-    return @inbounds H.h*H.closure[Int(I)]*v[Int(I)]
-end
-@inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, I::Index{Upper}) where T
-    N = length(v);
-    return @inbounds H.h*H.closure[N-Int(I)+1]v[Int(I)]
-end
-
-@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Interior}) where T
-    return @inbounds H.h*v[Int(I)]
-end
-
-function LazyTensors.apply(H::DiagonalNorm,  v::AbstractVector{T}, index::Index{Unknown}) where T
-    N = length(v);
-    r = getregion(Int(index), closuresize(H), N)
-    i = Index(Int(index), r)
-    return LazyTensors.apply(H, v, i)
-end
-
-function closuresize(H::DiagonalNorm{T<:Real,N,M}) where {T,N,M}
-    return M
-end
+LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I...)