Mercurial > repos > public > sbplib_julia
diff SbpOperators/src/quadrature/quadrature.jl @ 328:9cc5d1498b2d
Refactor 1D diagonal inner product in quadrature.jl to separate file. Write tests for quadratures. Clean up laplace and secondderivative
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 24 Sep 2020 22:31:48 +0200 |
parents | 802edc9f252e |
children |
line wrap: on
line diff
--- a/SbpOperators/src/quadrature/quadrature.jl Thu Sep 24 21:42:54 2020 +0200 +++ b/SbpOperators/src/quadrature/quadrature.jl Thu Sep 24 22:31:48 2020 +0200 @@ -1,30 +1,27 @@ -# At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings +export Quadrature """ Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} Implements the quadrature operator `Q` of Dim dimension as a TensorMapping -The multi-dimensional tensor operator consists of a tuple of 1D DiagonalNorm H +The multi-dimensional tensor operator consists of a tuple of 1D DiagonalInnerProduct H tensor operators. """ -export Quadrature -struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} - H::NTuple{Dim,DiagonalNorm{T,N,M}} +struct Quadrature{Dim,T<:Real,M} <: TensorOperator{T,Dim} + H::NTuple{Dim,DiagonalInnerProduct{T,M}} end -LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size +LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where {Dim} = range_size function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} error("not implemented") end -LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I) - -@inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T +function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T @inbounds q = apply(Q.H[1], v , I) return q end -@inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T +function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T # Quadrature in x direction @inbounds vx = view(v, :, Int(J)) @inbounds qx = apply(Q.H[1], vx , I) @@ -34,43 +31,4 @@ return qx*qy end -""" - DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} - -Implements the diagnoal norm operator `H` of Dim dimension as a TensorMapping -""" -export DiagonalNorm, closuresize, LazyTensors.apply -struct DiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} - h::T # The grid spacing could be included in the stencil already. Preferable? - closure::NTuple{M,T} - #TODO: Write a nice constructor -end - -@inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::Index) where T - return @inbounds apply(H, v, I) -end - -LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::Index) where T = LazyTensors.apply(H,v,I) - -@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Lower}) where T - return @inbounds H.h*H.closure[Int(I)]*v[Int(I)] -end -@inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, I::Index{Upper}) where T - N = length(v); - return @inbounds H.h*H.closure[N-Int(I)+1]v[Int(I)] -end - -@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Interior}) where T - return @inbounds H.h*v[Int(I)] -end - -function LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T - N = length(v); - r = getregion(Int(index), closuresize(H), N) - i = Index(Int(index), r) - return LazyTensors.apply(H, v, i) -end - -function closuresize(H::DiagonalNorm{T<:Real,N,M}) where {T,N,M} - return M -end +LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I...)