changeset 186:715ff09bb2ce boundary_conditions

Rename and export types in LazyTensors follow julia conventions
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 20 Jun 2019 21:31:15 +0200
parents 67da5ce895d8
children e8e21db70112
files LazyTensors/src/LazyTensors.jl LazyTensors/test/runtests.jl
diffstat 2 files changed, 59 insertions(+), 55 deletions(-) [+]
line wrap: on
line diff
--- a/LazyTensors/src/LazyTensors.jl	Thu Jun 20 21:15:48 2019 +0200
+++ b/LazyTensors/src/LazyTensors.jl	Thu Jun 20 21:31:15 2019 +0200
@@ -2,28 +2,29 @@
 
 
 """
-    Mapping{T,R,D}
+    TensorMapping{T,R,D}
 
 Describes a mapping of a D dimension tensor to an R dimension tensor.
 The action of the mapping is implemented through the method
 
-    apply(t::Mapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T}
+    apply(t::TensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T}
 
 The size of range tensor should be dependent on the size of the domain tensor
 and the type should implement the methods
 
-    range_size(::Mapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D}
-    domain_size(::Mapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D}
+    range_size(::TensorMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D}
+    domain_size(::TensorMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D}
 
 to allow querying for one or the other.
 
 Optionally the action of the transpose may be defined through
-    apply_transpose(t::Mapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T}
+    apply_transpose(t::TensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T}
 """
-abstract type Mapping{T,R,D} end
+abstract type TensorMapping{T,R,D} end
+export TensorMapping
 
 """
-    apply(t::Mapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T}
+    apply(t::TensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T}
 
 Return the result of the mapping for a given index.
 """
@@ -31,7 +32,7 @@
 export apply
 
 """
-    apply_transpose(t::Mapping{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {R,D,T}
+    apply_transpose(t::TensorMapping{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {R,D,T}
 
 Return the result of the transposed mapping for a given index.
 """
@@ -41,24 +42,24 @@
 """
 Return the dimension of the range space of a given mapping
 """
-range_dim(::Mapping{T,R,D}) where {T,R,D} = R
+range_dim(::TensorMapping{T,R,D}) where {T,R,D} = R
 
 """
 Return the dimension of the domain space of a given mapping
 """
-domain_dim(::Mapping{T,R,D}) where {T,R,D} = D
+domain_dim(::TensorMapping{T,R,D}) where {T,R,D} = D
 
 export range_dim, domain_dim
 
 """
-    range_size(M::Mapping, domain_size)
+    range_size(M::TensorMapping, domain_size)
 
 Return the resulting range size for the mapping applied to a given domain_size
 """
 function range_size end
 
 """
-    domain_size(M::Mapping, range_size)
+    domain_size(M::TensorMapping, range_size)
 
 Return the resulting domain size for the mapping applied to a given range_size
 """
@@ -69,92 +70,95 @@
 
 
 """
-    Operator{T,D}
+    TensorOperator{T,D}
 
-A `Mapping{T,D,D}` where the range and domain tensor have the same number of
+A `TensorMapping{T,D,D}` where the range and domain tensor have the same number of
 dimensions and the same size.
 """
-abstract type Operator{T,D} <: Mapping{T,D,D} end
-domain_size(::Operator{T,D}, range_size::NTuple{D,Integer}) where {T,D} = range_size
-range_size(::Operator{T,D}, domain_size::NTuple{D,Integer}) where {T,D} = domain_size
+abstract type TensorOperator{T,D} <: TensorMapping{T,D,D} end
+export TensorOperator
+domain_size(::TensorOperator{T,D}, range_size::NTuple{D,Integer}) where {T,D} = range_size
+range_size(::TensorOperator{T,D}, domain_size::NTuple{D,Integer}) where {T,D} = domain_size
 
 
 
 """
-    MappingTranspose{T,R,D} <: Mapping{T,D,R}
+    LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R}
 
-Struct for lazy transpose of a Mapping.
+Struct for lazy transpose of a TensorMapping.
 
 If a mapping implements the the `apply_transpose` method this allows working with
-the transpose of mapping `m` by using `m'`. `m'` will work as a regular Mapping lazily calling
+the transpose of mapping `m` by using `m'`. `m'` will work as a regular TensorMapping lazily calling
 the appropriate methods of `m`.
 """
-struct MappingTranspose{T,R,D} <: Mapping{T,D,R}
-    tm::Mapping{T,R,D}
+struct LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R}
+    tm::TensorMapping{T,R,D}
 end
+export LazyTensorMappingTranspose
 
 # # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors?
-Base.adjoint(t::Mapping) = MappingTranspose(t)
-Base.adjoint(t::MappingTranspose) = t.tm
+Base.adjoint(t::TensorMapping) = LazyTensorMappingTranspose(t)
+Base.adjoint(t::LazyTensorMappingTranspose) = t.tm
 
-apply(tm::MappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {T,R,D} = apply_transpose(tm.tm, v, I...)
-apply_transpose(tm::MappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,D} = apply(tm.tm, v, I...)
+apply(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {T,R,D} = apply_transpose(tm.tm, v, I...)
+apply_transpose(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,D} = apply(tm.tm, v, I...)
 
-range_size(tmt::MappingTranspose{T,R,D}, d_size::NTuple{R,Integer}) where {T,R,D} = domain_size(tmt.tm, domain_size)
-domain_size(tmt::MappingTranspose{T,R,D}, r_size::NTuple{D,Integer}) where {T,R,D} = range_size(tmt.tm, range_size)
+range_size(tmt::LazyTensorMappingTranspose{T,R,D}, d_size::NTuple{R,Integer}) where {T,R,D} = domain_size(tmt.tm, domain_size)
+domain_size(tmt::LazyTensorMappingTranspose{T,R,D}, r_size::NTuple{D,Integer}) where {T,R,D} = range_size(tmt.tm, range_size)
 
 
 """
-    Application{T,R,D} <: AbstractArray{T,R}
+    LazyTensorMappingApplication{T,R,D} <: AbstractArray{T,R}
 
-Struct for lazy application of a Mapping. Created using `*`.
+Struct for lazy application of a TensorMapping. Created using `*`.
 
-Allows the result of a `Mapping` applied to a vector to be treated as an `AbstractArray`.
-With a mapping `m` and a vector `v` the Application object can be created by `m*v`.
+Allows the result of a `TensorMapping` applied to a vector to be treated as an `AbstractArray`.
+With a mapping `m` and a vector `v` the LazyTensorMappingApplication object can be created by `m*v`.
 The actual result will be calcualted when indexing into `m*v`.
 """
-struct Application{T,R,D} <: AbstractArray{T,R}
-    t::Mapping{T,R,D}
+struct LazyTensorMappingApplication{T,R,D} <: AbstractArray{T,R}
+    t::TensorMapping{T,R,D}
     o::AbstractArray{T,D}
 end
-
-Base.:*(tm::Mapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = Application(tm,o)
+export LazyTensorMappingApplication
 
-Base.getindex(ta::Application{T,R,D}, I::Vararg) where {T,R,D} = apply(ta.t, ta.o, I...)
-Base.size(ta::Application{T,R,D}) where {T,R,D} = range_size(ta.t,size(ta.o))
+Base.:*(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o)
+
+Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg) where {T,R,D} = apply(ta.t, ta.o, I...)
+Base.size(ta::LazyTensorMappingApplication{T,R,D}) where {T,R,D} = range_size(ta.t,size(ta.o))
 # TODO: What else is needed to implement the AbstractArray interface?
 
 
 # # We need the associativity to be a→b→c = a→(b→c), which is the case for '→'
-Base.:*(args::Union{Mapping{T}, AbstractArray{T}}...) where T = foldr(*,args)
+Base.:*(args::Union{TensorMapping{T}, AbstractArray{T}}...) where T = foldr(*,args)
 # # Should we overload some other infix binary operator?
-# →(tm::Mapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = Application(tm,o)
+# →(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o)
 # TODO: We need to be really careful about good error messages.
-# For example what happens if you try to multiply Application with a Mapping(wrong order)?
+# For example what happens if you try to multiply LazyTensorMappingApplication with a TensorMapping(wrong order)?
 
 
 
-# struct TensorMappingComposition{T,R,K,D} <: Mapping{T,R,D}
-#     t1::Mapping{T,R,K}
-#     t2::Mapping{T,K,D}
+# struct LazyTensorMappingComposition{T,R,K,D} <: TensorMapping{T,R,D}
+#     t1::TensorMapping{T,R,K}
+#     t2::TensorMapping{T,K,D}
 # end
 
-# Base.:∘(s::Mapping{T,R,K}, t::Mapping{T,K,D}) where {T,R,K,D} = TensorMappingComposition(s,t)
+# Base.:∘(s::TensorMapping{T,R,K}, t::TensorMapping{T,K,D}) where {T,R,K,D} = LazyTensorMappingComposition(s,t)
 
-# function range_size(tm::TensorMappingComposition{T,R,K,D}, domain_size::NTuple{D,Integer}) where {T,R,K,D}
+# function range_size(tm::LazyTensorMappingComposition{T,R,K,D}, domain_size::NTuple{D,Integer}) where {T,R,K,D}
 #     range_size(tm.t1, domain_size(tm.t2, domain_size))
 # end
 
-# function domain_size(tm::TensorMappingComposition{T,R,K,D}, range_size::NTuple{R,Integer}) where {T,R,K,D}
+# function domain_size(tm::LazyTensorMappingComposition{T,R,K,D}, range_size::NTuple{R,Integer}) where {T,R,K,D}
 #     domain_size(tm.t1, domain_size(tm.t2, range_size))
 # end
 
-# function apply(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D}
-#     apply(c.t1, Application(c.t2,v), I...)
+# function apply(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D}
+#     apply(c.t1, LazyTensorMappingApplication(c.t2,v), I...)
 # end
 
-# function apply_transpose(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D}
-#     apply_transpose(c.t2, Application(c.t1',v), I...)
+# function apply_transpose(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D}
+#     apply_transpose(c.t2, LazyTensorMappingApplication(c.t1',v), I...)
 # end
 
 # # Have i gone too crazy with the type parameters? Maybe they aren't all needed?
--- a/LazyTensors/test/runtests.jl	Thu Jun 20 21:15:48 2019 +0200
+++ b/LazyTensors/test/runtests.jl	Thu Jun 20 21:31:15 2019 +0200
@@ -4,21 +4,21 @@
 
 
 @testset "Generic Mapping methods" begin
-    struct DummyMapping{T,R,D} <: LazyTensors.Mapping{T,R,D} end
+    struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end
     LazyTensors.apply(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply
     @test range_dim(DummyMapping{Int,2,3}()) == 2
     @test domain_dim(DummyMapping{Int,2,3}()) == 3
     @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),0) == :apply
 end
 
-struct DummyOperator{T,D} <: LazyTensors.Operator{T,D} end
 @testset "Generic Operator methods" begin
+    struct DummyOperator{T,D} <: TensorOperator{T,D} end
     @test range_size(DummyOperator{Int,2}(), (3,5)) == (3,5)
     @test domain_size(DummyOperator{Float64, 3}(), (3,3,1)) == (3,3,1)
 end
 
 @testset "Mapping transpose" begin
-    struct DummyMapping{T,R,D} <: LazyTensors.Mapping{T,R,D} end
+    struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end
 
     LazyTensors.apply(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply
     LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply_transpose
@@ -37,7 +37,7 @@
 end
 
 @testset "TensorApplication" begin
-    struct DummyMapping{T,R,D} <: LazyTensors.Mapping{T,R,D} end
+    struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end
 
     LazyTensors.apply(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = (:apply,v,i)
     LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, i) where {T,R,D} = :apply_transpose