Mercurial > repos > public > sbplib_julia
view LazyTensors/src/LazyTensors.jl @ 186:715ff09bb2ce boundary_conditions
Rename and export types in LazyTensors follow julia conventions
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 20 Jun 2019 21:31:15 +0200 |
parents | 6945c15a6a7a |
children | 8964b3165097 |
line wrap: on
line source
module LazyTensors """ TensorMapping{T,R,D} Describes a mapping of a D dimension tensor to an R dimension tensor. The action of the mapping is implemented through the method apply(t::TensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T} The size of range tensor should be dependent on the size of the domain tensor and the type should implement the methods range_size(::TensorMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} domain_size(::TensorMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} to allow querying for one or the other. Optionally the action of the transpose may be defined through apply_transpose(t::TensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T} """ abstract type TensorMapping{T,R,D} end export TensorMapping """ apply(t::TensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T} Return the result of the mapping for a given index. """ function apply end export apply """ apply_transpose(t::TensorMapping{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {R,D,T} Return the result of the transposed mapping for a given index. """ function apply_transpose end export apply_transpose """ Return the dimension of the range space of a given mapping """ range_dim(::TensorMapping{T,R,D}) where {T,R,D} = R """ Return the dimension of the domain space of a given mapping """ domain_dim(::TensorMapping{T,R,D}) where {T,R,D} = D export range_dim, domain_dim """ range_size(M::TensorMapping, domain_size) Return the resulting range size for the mapping applied to a given domain_size """ function range_size end """ domain_size(M::TensorMapping, range_size) Return the resulting domain size for the mapping applied to a given range_size """ function domain_size end export range_size, domain_size # TODO: Think about boundschecking! """ TensorOperator{T,D} A `TensorMapping{T,D,D}` where the range and domain tensor have the same number of dimensions and the same size. """ abstract type TensorOperator{T,D} <: TensorMapping{T,D,D} end export TensorOperator domain_size(::TensorOperator{T,D}, range_size::NTuple{D,Integer}) where {T,D} = range_size range_size(::TensorOperator{T,D}, domain_size::NTuple{D,Integer}) where {T,D} = domain_size """ LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R} Struct for lazy transpose of a TensorMapping. If a mapping implements the the `apply_transpose` method this allows working with the transpose of mapping `m` by using `m'`. `m'` will work as a regular TensorMapping lazily calling the appropriate methods of `m`. """ struct LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R} tm::TensorMapping{T,R,D} end export LazyTensorMappingTranspose # # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors? Base.adjoint(t::TensorMapping) = LazyTensorMappingTranspose(t) Base.adjoint(t::LazyTensorMappingTranspose) = t.tm apply(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {T,R,D} = apply_transpose(tm.tm, v, I...) apply_transpose(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,D} = apply(tm.tm, v, I...) range_size(tmt::LazyTensorMappingTranspose{T,R,D}, d_size::NTuple{R,Integer}) where {T,R,D} = domain_size(tmt.tm, domain_size) domain_size(tmt::LazyTensorMappingTranspose{T,R,D}, r_size::NTuple{D,Integer}) where {T,R,D} = range_size(tmt.tm, range_size) """ LazyTensorMappingApplication{T,R,D} <: AbstractArray{T,R} Struct for lazy application of a TensorMapping. Created using `*`. Allows the result of a `TensorMapping` applied to a vector to be treated as an `AbstractArray`. With a mapping `m` and a vector `v` the LazyTensorMappingApplication object can be created by `m*v`. The actual result will be calcualted when indexing into `m*v`. """ struct LazyTensorMappingApplication{T,R,D} <: AbstractArray{T,R} t::TensorMapping{T,R,D} o::AbstractArray{T,D} end export LazyTensorMappingApplication Base.:*(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg) where {T,R,D} = apply(ta.t, ta.o, I...) Base.size(ta::LazyTensorMappingApplication{T,R,D}) where {T,R,D} = range_size(ta.t,size(ta.o)) # TODO: What else is needed to implement the AbstractArray interface? # # We need the associativity to be a→b→c = a→(b→c), which is the case for '→' Base.:*(args::Union{TensorMapping{T}, AbstractArray{T}}...) where T = foldr(*,args) # # Should we overload some other infix binary operator? # →(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) # TODO: We need to be really careful about good error messages. # For example what happens if you try to multiply LazyTensorMappingApplication with a TensorMapping(wrong order)? # struct LazyTensorMappingComposition{T,R,K,D} <: TensorMapping{T,R,D} # t1::TensorMapping{T,R,K} # t2::TensorMapping{T,K,D} # end # Base.:∘(s::TensorMapping{T,R,K}, t::TensorMapping{T,K,D}) where {T,R,K,D} = LazyTensorMappingComposition(s,t) # function range_size(tm::LazyTensorMappingComposition{T,R,K,D}, domain_size::NTuple{D,Integer}) where {T,R,K,D} # range_size(tm.t1, domain_size(tm.t2, domain_size)) # end # function domain_size(tm::LazyTensorMappingComposition{T,R,K,D}, range_size::NTuple{R,Integer}) where {T,R,K,D} # domain_size(tm.t1, domain_size(tm.t2, range_size)) # end # function apply(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D} # apply(c.t1, LazyTensorMappingApplication(c.t2,v), I...) # end # function apply_transpose(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D} # apply_transpose(c.t2, LazyTensorMappingApplication(c.t1',v), I...) # end # # Have i gone too crazy with the type parameters? Maybe they aren't all needed? # export → end # module