changeset 1018:5ec49dd2c7c4 feature/stencil_set_type

Reintroduce read_stencil_set
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Tue, 22 Mar 2022 09:57:28 +0100
parents 37fd8c1cadb2
children 3031ce7a4999
files src/SbpOperators/SbpOperators.jl src/SbpOperators/readoperator.jl test/SbpOperators/boundaryops/boundary_restriction_test.jl test/SbpOperators/boundaryops/normal_derivative_test.jl test/SbpOperators/volumeops/derivatives/first_derivative_test.jl test/SbpOperators/volumeops/derivatives/second_derivative_test.jl test/SbpOperators/volumeops/inner_products/inner_product_test.jl test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl test/SbpOperators/volumeops/laplace/laplace_test.jl
diffstat 9 files changed, 45 insertions(+), 43 deletions(-) [+]
line wrap: on
line diff
--- a/src/SbpOperators/SbpOperators.jl	Fri Mar 18 13:29:35 2022 +0100
+++ b/src/SbpOperators/SbpOperators.jl	Tue Mar 22 09:57:28 2022 +0100
@@ -1,5 +1,15 @@
 module SbpOperators
 
+# Stencil set
+export StencilSet
+export read_stencil_set
+export get_stencil_set
+export parse_stencil
+export parse_scalar
+export parse_tuple
+export sbp_operators_path
+
+# Operators
 export boundary_quadrature
 export boundary_restriction
 export inner_product
--- a/src/SbpOperators/readoperator.jl	Fri Mar 18 13:29:35 2022 +0100
+++ b/src/SbpOperators/readoperator.jl	Tue Mar 22 09:57:28 2022 +0100
@@ -1,13 +1,5 @@
 using TOML
 
-export StencilSet
-export get_stencil_set
-
-export parse_stencil
-export parse_scalar
-export parse_tuple
-
-export sbp_operators_path
 
 """
     StencilSet
@@ -22,7 +14,7 @@
 
 
 """
-    StencilSet(filename; filters)
+read_stencil_set(filename; filters)
 
 Creates a `StencilSet` from a TOML file based on some key-value
 filters. If more than one set matches the filters an error is raised. The
@@ -38,9 +30,9 @@
 
 For more information see [Operator file format](@ref) in the documentation.
 
-See also [`sbp_operators_path`](@ref), [`get_stencil_set`](@ref), [`parse_stencil`](@ref), [`parse_scalar`](@ref), [`parse_tuple`](@ref),.
+See also [`StencilSet`](@ref), [`sbp_operators_path`](@ref), [`get_stencil_set`](@ref), [`parse_stencil`](@ref), [`parse_scalar`](@ref), [`parse_tuple`](@ref).
 """
-StencilSet(filename; filters...) = StencilSet(get_stencil_set(TOML.parsefile(filename); filters...))
+read_stencil_set(filename; filters...) = StencilSet(get_stencil_set(TOML.parsefile(filename); filters...))
 
 
 """
@@ -49,7 +41,7 @@
 Picks out a stencil set from an already parsed TOML based on some key-value
 filters.
 
-See also [`StencilSet`](@ref).
+See also [`read_stencil_set`](@ref).
 """
 function get_stencil_set(parsed_toml; filters...)
     matches = findall(parsed_toml["stencil_set"]) do set
@@ -75,7 +67,7 @@
 
 Accepts parsed TOML and reads it as a stencil.
 
-See also [`StencilSet`](@ref), [`parse_scalar`](@ref), [`parse_tuple`](@ref).
+See also [`read_stencil_set`](@ref), [`parse_scalar`](@ref), [`parse_tuple`](@ref).
 """
 function parse_stencil(parsed_toml)
     check_stencil_toml(parsed_toml)
@@ -123,7 +115,7 @@
 
 Parse a scalar, represented as a string or a number in the TOML, and return it as a `Rational`
 
-See also [`StencilSet`](@ref), [`parse_stencil`](@ref) [`parse_tuple`](@ref).
+See also [`read_stencil_set`](@ref), [`parse_stencil`](@ref) [`parse_tuple`](@ref).
 """
 function parse_scalar(parsed_toml)
     try
@@ -138,7 +130,7 @@
 
 Parse an array as a tuple of scalars.
 
-See also [`StencilSet`](@ref), [`parse_stencil`](@ref), [`parse_scalar`](@ref).
+See also [`read_stencil_set`](@ref), [`parse_stencil`](@ref), [`parse_scalar`](@ref).
 """
 function parse_tuple(parsed_toml)
     if !(parsed_toml isa Array)
@@ -167,6 +159,6 @@
 
 Calculate the path for the operators folder with included stencil sets.
 
-See also [`StencilSet`](@ref)
+See also [`StencilSet`](@ref), [`read_stencil_set`](@ref).
 """
 sbp_operators_path() = (@__DIR__) * "/operators/"
--- a/test/SbpOperators/boundaryops/boundary_restriction_test.jl	Fri Mar 18 13:29:35 2022 +0100
+++ b/test/SbpOperators/boundaryops/boundary_restriction_test.jl	Tue Mar 22 09:57:28 2022 +0100
@@ -7,7 +7,7 @@
 using Sbplib.SbpOperators: BoundaryOperator, Stencil
 
 @testset "boundary_restriction" begin
-	stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order = 4)
+	stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order = 4)
 	e_closure = parse_stencil(stencil_set["e"]["closure"])
     g_1D = EquidistantGrid(11, 0.0, 1.0)
     g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0))
--- a/test/SbpOperators/boundaryops/normal_derivative_test.jl	Fri Mar 18 13:29:35 2022 +0100
+++ b/test/SbpOperators/boundaryops/normal_derivative_test.jl	Tue Mar 22 09:57:28 2022 +0100
@@ -10,7 +10,7 @@
     g_1D = EquidistantGrid(11, 0.0, 1.0)
     g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0))
     @testset "normal_derivative" begin
-    	stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+    	stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
     	d_closure = parse_stencil(stencil_set["d1"]["closure"])
         @testset "1D" begin
             d_l = normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}())
@@ -38,7 +38,7 @@
         v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x)
         # TODO: Test for higher order polynomials?
         @testset "2nd order" begin
-        	stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=2)
+        	stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
         	d_closure = parse_stencil(stencil_set["d1"]["closure"])
             d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D))
 
@@ -49,7 +49,7 @@
         end
 
         @testset "4th order" begin
-            stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+            stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
         	d_closure = parse_stencil(stencil_set["d1"]["closure"])
             d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D))
             
--- a/test/SbpOperators/volumeops/derivatives/first_derivative_test.jl	Fri Mar 18 13:29:35 2022 +0100
+++ b/test/SbpOperators/volumeops/derivatives/first_derivative_test.jl	Tue Mar 22 09:57:28 2022 +0100
@@ -22,7 +22,7 @@
 
 @testset "first_derivative" begin
     @testset "Constructors" begin
-        stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=2)
+        stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
 
         g₁ = EquidistantGrid(11, 0., 1.)
         g₂ = EquidistantGrid((11,14), (0.,1.), (1.,3.))
@@ -44,7 +44,7 @@
         N = 20
         g = EquidistantGrid(N, 0//1,2//1)
         @testset for order ∈ [2,4]
-            stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order)
+            stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order)
             D₁ = first_derivative(g, stencil_set, 1)
 
             @testset "boundary x^$k" for k ∈ 0:order÷2
@@ -74,7 +74,7 @@
         g = EquidistantGrid(30, 0.,1.)
         v = evalOn(g, x->exp(x))
         @testset for (order, tol) ∈ [(2, 6e-3),(4, 2e-4)]
-            stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order)
+            stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order)
             D₁ = first_derivative(g, stencil_set, 1)
 
             @test D₁*v ≈ v rtol=tol
--- a/test/SbpOperators/volumeops/derivatives/second_derivative_test.jl	Fri Mar 18 13:29:35 2022 +0100
+++ b/test/SbpOperators/volumeops/derivatives/second_derivative_test.jl	Tue Mar 22 09:57:28 2022 +0100
@@ -8,7 +8,7 @@
 
 @testset "SecondDerivative" begin
     operator_path = sbp_operators_path()*"standard_diagonal.toml"
-    stencil_set = StencilSet(operator_path; order=4)
+    stencil_set = read_stencil_set(operator_path; order=4)
     inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"])
     closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
     Lx = 3.5
@@ -51,7 +51,7 @@
             # 2nd order interior stencil, 1nd order boundary stencil,
             # implies that L*v should be exact for monomials up to order 2.
             @testset "2nd order" begin
-                stencil_set = StencilSet(operator_path; order=2)
+                stencil_set = read_stencil_set(operator_path; order=2)
                 Dₓₓ = second_derivative(g_1D,stencil_set)
                 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10
                 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10
@@ -62,7 +62,7 @@
             # 4th order interior stencil, 2nd order boundary stencil,
             # implies that L*v should be exact for monomials up to order 3.
             @testset "4th order" begin
-                stencil_set = StencilSet(operator_path; order=4)
+                stencil_set = read_stencil_set(operator_path; order=4)
                 Dₓₓ = second_derivative(g_1D,stencil_set)
                 # NOTE: high tolerances for checking the "exact" differentiation
                 # due to accumulation of round-off errors/cancellation errors?
@@ -88,7 +88,7 @@
             # 2nd order interior stencil, 1st order boundary stencil,
             # implies that L*v should be exact for binomials up to order 2.
             @testset "2nd order" begin
-                stencil_set = StencilSet(operator_path; order=2)
+                stencil_set = read_stencil_set(operator_path; order=2)
                 Dyy = second_derivative(g_2D,stencil_set,2)
                 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9
                 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9
@@ -99,7 +99,7 @@
             # 4th order interior stencil, 2nd order boundary stencil,
             # implies that L*v should be exact for binomials up to order 3.
             @testset "4th order" begin
-                stencil_set = StencilSet(operator_path; order=4)
+                stencil_set = read_stencil_set(operator_path; order=4)
                 Dyy = second_derivative(g_2D,stencil_set,2)
                 # NOTE: high tolerances for checking the "exact" differentiation
                 # due to accumulation of round-off errors/cancellation errors?
--- a/test/SbpOperators/volumeops/inner_products/inner_product_test.jl	Fri Mar 18 13:29:35 2022 +0100
+++ b/test/SbpOperators/volumeops/inner_products/inner_product_test.jl	Tue Mar 22 09:57:28 2022 +0100
@@ -15,7 +15,7 @@
     g_3D = EquidistantGrid((10,10, 10), (0.0, 0.0, 0.0), (Lx,Ly,Lz))
     integral(H,v) = sum(H*v)
     @testset "inner_product" begin
-        stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+        stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
         quadrature_interior = parse_scalar(stencil_set["H"]["inner"])
         quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
         @testset "0D" begin
@@ -41,7 +41,7 @@
     end
 
     @testset "Sizes" begin
-        stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+        stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
         quadrature_interior = parse_scalar(stencil_set["H"]["inner"])
         quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
         @testset "1D" begin
@@ -66,7 +66,7 @@
             u = evalOn(g_1D,x->sin(x))
 
             @testset "2nd order" begin
-                stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=2)
+                stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
                 quadrature_interior = parse_scalar(stencil_set["H"]["inner"])
                 quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
                 H = inner_product(g_1D, quadrature_interior, quadrature_closure)
@@ -77,7 +77,7 @@
             end
 
             @testset "4th order" begin
-                stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+                stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
                 quadrature_interior = parse_scalar(stencil_set["H"]["inner"])
                 quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
                 H = inner_product(g_1D, quadrature_interior, quadrature_closure)
@@ -93,7 +93,7 @@
             v = b*ones(Float64, size(g_2D))
             u = evalOn(g_2D,(x,y)->sin(x)+cos(y))
             @testset "2nd order" begin
-                stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=2)
+                stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
                 quadrature_interior = parse_scalar(stencil_set["H"]["inner"])
                 quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
                 H = inner_product(g_2D, quadrature_interior, quadrature_closure)
@@ -101,7 +101,7 @@
                 @test integral(H,u) ≈ π rtol = 1e-4
             end
             @testset "4th order" begin
-                stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+                stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
                 quadrature_interior = parse_scalar(stencil_set["H"]["inner"])
                 quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
                 H = inner_product(g_2D, quadrature_interior, quadrature_closure)
--- a/test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl	Fri Mar 18 13:29:35 2022 +0100
+++ b/test/SbpOperators/volumeops/inner_products/inverse_inner_product_test.jl	Tue Mar 22 09:57:28 2022 +0100
@@ -12,7 +12,7 @@
     g_1D = EquidistantGrid(77, 0.0, Lx)
     g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
     @testset "inverse_inner_product" begin
-        stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+        stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
         quadrature_interior = parse_scalar(stencil_set["H"]["inner"])
         quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
         @testset "0D" begin
@@ -38,7 +38,7 @@
     end
 
     @testset "Sizes" begin
-        stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+        stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
         quadrature_interior = parse_scalar(stencil_set["H"]["inner"])
         quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
         @testset "1D" begin
@@ -58,7 +58,7 @@
             v = evalOn(g_1D,x->sin(x))
             u = evalOn(g_1D,x->x^3-x^2+1)
             @testset "2nd order" begin
-                stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=2)
+                stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
                 quadrature_interior = parse_scalar(stencil_set["H"]["inner"])
                 quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
                 H = inner_product(g_1D, quadrature_interior, quadrature_closure)
@@ -67,7 +67,7 @@
                 @test Hi*H*u ≈ u rtol = 1e-15
             end
             @testset "4th order" begin
-                stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+                stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
                 quadrature_interior = parse_scalar(stencil_set["H"]["inner"])
                 quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
                 H = inner_product(g_1D, quadrature_interior, quadrature_closure)
@@ -80,7 +80,7 @@
             v = evalOn(g_2D,(x,y)->sin(x)+cos(y))
             u = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y))
             @testset "2nd order" begin
-                stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=2)
+                stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
                 quadrature_interior = parse_scalar(stencil_set["H"]["inner"])
                 quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
                 H = inner_product(g_2D, quadrature_interior, quadrature_closure)
@@ -89,7 +89,7 @@
                 @test Hi*H*u ≈ u rtol = 1e-15
             end
             @testset "4th order" begin
-                stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+                stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
                 quadrature_interior = parse_scalar(stencil_set["H"]["inner"])
                 quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
                 H = inner_product(g_2D, quadrature_interior, quadrature_closure)
--- a/test/SbpOperators/volumeops/laplace/laplace_test.jl	Fri Mar 18 13:29:35 2022 +0100
+++ b/test/SbpOperators/volumeops/laplace/laplace_test.jl	Tue Mar 22 09:57:28 2022 +0100
@@ -6,7 +6,7 @@
 
 # Default stencils (4th order)
 operator_path = sbp_operators_path()*"standard_diagonal.toml"
-stencil_set = StencilSet(operator_path; order=4)
+stencil_set = read_stencil_set(operator_path; order=4)
 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"])
 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
 g_1D = EquidistantGrid(101, 0.0, 1.)
@@ -42,7 +42,7 @@
         # 2nd order interior stencil, 1st order boundary stencil,
         # implies that L*v should be exact for binomials up to order 2.
         @testset "2nd order" begin
-            stencil_set = StencilSet(operator_path; order=2)
+            stencil_set = read_stencil_set(operator_path; order=2)
             Δ = Laplace(g_3D, stencil_set)
             @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
             @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
@@ -53,7 +53,7 @@
         # 4th order interior stencil, 2nd order boundary stencil,
         # implies that L*v should be exact for binomials up to order 3.
         @testset "4th order" begin
-            stencil_set = StencilSet(operator_path; order=4)
+            stencil_set = read_stencil_set(operator_path; order=4)
             Δ = Laplace(g_3D, stencil_set)
             # NOTE: high tolerances for checking the "exact" differentiation
             # due to accumulation of round-off errors/cancellation errors?