Mercurial > repos > public > sbplib_julia
view test/SbpOperators/volumeops/laplace/laplace_test.jl @ 1018:5ec49dd2c7c4 feature/stencil_set_type
Reintroduce read_stencil_set
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 22 Mar 2022 09:57:28 +0100 |
parents | b6238afd3bb0 |
children | 7fc8df5157a7 |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.LazyTensors # Default stencils (4th order) operator_path = sbp_operators_path()*"standard_diagonal.toml" stencil_set = read_stencil_set(operator_path; order=4) inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) g_1D = EquidistantGrid(101, 0.0, 1.) g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) @testset "Laplace" begin @testset "Constructors" begin @testset "1D" begin Δ = laplace(g_1D, inner_stencil, closure_stencils) @test Laplace(g_1D, stencil_set) == Laplace(Δ, stencil_set) @test Laplace(g_1D, stencil_set) isa TensorMapping{T,1,1} where T end @testset "3D" begin Δ = laplace(g_3D, inner_stencil, closure_stencils) @test Laplace(g_3D, stencil_set) == Laplace(Δ,stencil_set) @test Laplace(g_3D, stencil_set) isa TensorMapping{T,3,3} where T end end # Exact differentiation is measured point-wise. In other cases # the error is measured in the l2-norm. @testset "Accuracy" begin l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2)); polynomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i) polynomials = (polynomials...,evalOn(g_3D,f_i)) end v = evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @testset "2nd order" begin stencil_set = read_stencil_set(operator_path; order=2) Δ = Laplace(g_3D, stencil_set) @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test Δ*v ≈ Δv rtol = 5e-2 norm = l2 end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. @testset "4th order" begin stencil_set = read_stencil_set(operator_path; order=4) Δ = Laplace(g_3D, stencil_set) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test Δ*polynomials[4] ≈ polynomials[2] atol = 5e-9 @test Δ*v ≈ Δv rtol = 5e-4 norm = l2 end end end @testset "laplace" begin @testset "1D" begin Δ = laplace(g_1D, inner_stencil, closure_stencils) @test Δ == second_derivative(g_1D, inner_stencil, closure_stencils, 1) @test Δ isa TensorMapping{T,1,1} where T end @testset "3D" begin Δ = laplace(g_3D, inner_stencil, closure_stencils) @test Δ isa TensorMapping{T,3,3} where T Dxx = second_derivative(g_3D, inner_stencil, closure_stencils, 1) Dyy = second_derivative(g_3D, inner_stencil, closure_stencils, 2) Dzz = second_derivative(g_3D, inner_stencil, closure_stencils, 3) @test Δ == Dxx + Dyy + Dzz @test Δ isa TensorMapping{T,3,3} where T end end