view test/SbpOperators/volumeops/laplace/laplace_test.jl @ 1018:5ec49dd2c7c4 feature/stencil_set_type

Reintroduce read_stencil_set
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Tue, 22 Mar 2022 09:57:28 +0100
parents b6238afd3bb0
children 7fc8df5157a7
line wrap: on
line source

using Test

using Sbplib.SbpOperators
using Sbplib.Grids
using Sbplib.LazyTensors

# Default stencils (4th order)
operator_path = sbp_operators_path()*"standard_diagonal.toml"
stencil_set = read_stencil_set(operator_path; order=4)
inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"])
closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
g_1D = EquidistantGrid(101, 0.0, 1.)
g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.))

@testset "Laplace" begin
    @testset "Constructors" begin
        @testset "1D" begin
            Δ = laplace(g_1D, inner_stencil, closure_stencils)
            @test Laplace(g_1D, stencil_set) == Laplace(Δ, stencil_set)
            @test Laplace(g_1D, stencil_set) isa TensorMapping{T,1,1}  where T
        end
        @testset "3D" begin
            Δ = laplace(g_3D, inner_stencil, closure_stencils)
            @test Laplace(g_3D, stencil_set) == Laplace(Δ,stencil_set)
            @test Laplace(g_3D, stencil_set) isa TensorMapping{T,3,3} where T
        end
    end

    # Exact differentiation is measured point-wise. In other cases
    # the error is measured in the l2-norm.
    @testset "Accuracy" begin
        l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2));
        polynomials = ()
        maxOrder = 4;
        for i = 0:maxOrder-1
            f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i)
            polynomials = (polynomials...,evalOn(g_3D,f_i))
        end
        v = evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z))
        Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z))

        # 2nd order interior stencil, 1st order boundary stencil,
        # implies that L*v should be exact for binomials up to order 2.
        @testset "2nd order" begin
            stencil_set = read_stencil_set(operator_path; order=2)
            Δ = Laplace(g_3D, stencil_set)
            @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
            @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
            @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9
            @test Δ*v ≈ Δv rtol = 5e-2 norm = l2
        end

        # 4th order interior stencil, 2nd order boundary stencil,
        # implies that L*v should be exact for binomials up to order 3.
        @testset "4th order" begin
            stencil_set = read_stencil_set(operator_path; order=4)
            Δ = Laplace(g_3D, stencil_set)
            # NOTE: high tolerances for checking the "exact" differentiation
            # due to accumulation of round-off errors/cancellation errors?
            @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
            @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
            @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9
            @test Δ*polynomials[4] ≈ polynomials[2] atol = 5e-9
            @test Δ*v ≈ Δv rtol = 5e-4 norm = l2
        end
    end
end

@testset "laplace" begin
    @testset "1D" begin
        Δ = laplace(g_1D, inner_stencil, closure_stencils)
        @test Δ == second_derivative(g_1D, inner_stencil, closure_stencils, 1)
        @test Δ isa TensorMapping{T,1,1}  where T
    end
    @testset "3D" begin
        Δ = laplace(g_3D, inner_stencil, closure_stencils)
        @test Δ isa TensorMapping{T,3,3} where T
        Dxx = second_derivative(g_3D, inner_stencil, closure_stencils, 1)
        Dyy = second_derivative(g_3D, inner_stencil, closure_stencils, 2)
        Dzz = second_derivative(g_3D, inner_stencil, closure_stencils, 3)
        @test Δ == Dxx + Dyy + Dzz
        @test Δ isa TensorMapping{T,3,3} where T
    end
end