comparison test/SbpOperators/volumeops/laplace/laplace_test.jl @ 1018:5ec49dd2c7c4 feature/stencil_set_type

Reintroduce read_stencil_set
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Tue, 22 Mar 2022 09:57:28 +0100
parents b6238afd3bb0
children 7fc8df5157a7
comparison
equal deleted inserted replaced
991:37fd8c1cadb2 1018:5ec49dd2c7c4
4 using Sbplib.Grids 4 using Sbplib.Grids
5 using Sbplib.LazyTensors 5 using Sbplib.LazyTensors
6 6
7 # Default stencils (4th order) 7 # Default stencils (4th order)
8 operator_path = sbp_operators_path()*"standard_diagonal.toml" 8 operator_path = sbp_operators_path()*"standard_diagonal.toml"
9 stencil_set = StencilSet(operator_path; order=4) 9 stencil_set = read_stencil_set(operator_path; order=4)
10 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) 10 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"])
11 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) 11 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
12 g_1D = EquidistantGrid(101, 0.0, 1.) 12 g_1D = EquidistantGrid(101, 0.0, 1.)
13 g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) 13 g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.))
14 14
40 Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) 40 Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z))
41 41
42 # 2nd order interior stencil, 1st order boundary stencil, 42 # 2nd order interior stencil, 1st order boundary stencil,
43 # implies that L*v should be exact for binomials up to order 2. 43 # implies that L*v should be exact for binomials up to order 2.
44 @testset "2nd order" begin 44 @testset "2nd order" begin
45 stencil_set = StencilSet(operator_path; order=2) 45 stencil_set = read_stencil_set(operator_path; order=2)
46 Δ = Laplace(g_3D, stencil_set) 46 Δ = Laplace(g_3D, stencil_set)
47 @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 47 @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
48 @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 48 @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
49 @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9 49 @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9
50 @test Δ*v ≈ Δv rtol = 5e-2 norm = l2 50 @test Δ*v ≈ Δv rtol = 5e-2 norm = l2
51 end 51 end
52 52
53 # 4th order interior stencil, 2nd order boundary stencil, 53 # 4th order interior stencil, 2nd order boundary stencil,
54 # implies that L*v should be exact for binomials up to order 3. 54 # implies that L*v should be exact for binomials up to order 3.
55 @testset "4th order" begin 55 @testset "4th order" begin
56 stencil_set = StencilSet(operator_path; order=4) 56 stencil_set = read_stencil_set(operator_path; order=4)
57 Δ = Laplace(g_3D, stencil_set) 57 Δ = Laplace(g_3D, stencil_set)
58 # NOTE: high tolerances for checking the "exact" differentiation 58 # NOTE: high tolerances for checking the "exact" differentiation
59 # due to accumulation of round-off errors/cancellation errors? 59 # due to accumulation of round-off errors/cancellation errors?
60 @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 60 @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
61 @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 61 @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9