Mercurial > repos > public > sbplib_julia
changeset 1653:9e2228449a72 feature/sbp_operators/laplace_curvilinear
Restructure test sets for normal derivative
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 26 Jun 2024 13:42:19 +0200 |
parents | 65b2d2c72fbc |
children | f4dc17cfafce |
files | test/SbpOperators/boundaryops/normal_derivative_test.jl |
diffstat | 1 files changed, 46 insertions(+), 44 deletions(-) [+] |
line wrap: on
line diff
diff -r 65b2d2c72fbc -r 9e2228449a72 test/SbpOperators/boundaryops/normal_derivative_test.jl --- a/test/SbpOperators/boundaryops/normal_derivative_test.jl Wed Jun 26 12:54:29 2024 +0200 +++ b/test/SbpOperators/boundaryops/normal_derivative_test.jl Wed Jun 26 13:42:19 2024 +0200 @@ -7,53 +7,55 @@ import Sbplib.SbpOperators.BoundaryOperator @testset "normal_derivative" begin - g_1D = equidistant_grid(0.0, 1.0, 11) - g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12) - @testset "normal_derivative" begin - stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) - @testset "1D" begin - d_l = normal_derivative(g_1D, stencil_set, Lower()) - @test d_l == normal_derivative(g_1D, stencil_set, Lower()) - @test d_l isa BoundaryOperator{T,Lower} where T - @test d_l isa LazyTensor{T,0,1} where T - end - @testset "2D" begin - d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) - d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,Upper}()) - Ix = IdentityTensor{Float64}((size(g_2D)[1],)) - Iy = IdentityTensor{Float64}((size(g_2D)[2],)) - d_l = normal_derivative(g_2D.grids[1], stencil_set, Lower()) - d_r = normal_derivative(g_2D.grids[2], stencil_set, Upper()) - @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) - @test d_w == d_l⊗Iy - @test d_n == Ix⊗d_r - @test d_w isa LazyTensor{T,1,2} where T - @test d_n isa LazyTensor{T,1,2} where T - end + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + + @testset "EquidistantGrid" begin + g_1D = equidistant_grid(0.0, 1.0, 11) + + d_l = normal_derivative(g_1D, stencil_set, Lower()) + @test d_l == normal_derivative(g_1D, stencil_set, Lower()) + @test d_l isa BoundaryOperator{T,Lower} where T + @test d_l isa LazyTensor{T,0,1} where T end - @testset "Accuracy" begin - v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) - v∂x = eval_on(g_2D, (x,y)-> 2*x + y) - v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x) - # TODO: Test for higher order polynomials? - @testset "2nd order" begin - stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) - d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) + + @testset "TensorGrid" begin + g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12) + d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) + d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,Upper}()) + Ix = IdentityTensor{Float64}((size(g_2D)[1],)) + Iy = IdentityTensor{Float64}((size(g_2D)[2],)) + d_l = normal_derivative(g_2D.grids[1], stencil_set, Lower()) + d_r = normal_derivative(g_2D.grids[2], stencil_set, Upper()) + @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) + @test d_w == d_l⊗Iy + @test d_n == Ix⊗d_r + @test d_w isa LazyTensor{T,1,2} where T + @test d_n isa LazyTensor{T,1,2} where T - @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 - @test d_e*v ≈ v∂x[end,:] atol = 1e-13 - @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 - @test d_n*v ≈ v∂y[:,end] atol = 1e-13 - end + @testset "Accuracy" begin + v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) + v∂x = eval_on(g_2D, (x,y)-> 2*x + y) + v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x) + # TODO: Test for higher order polynomials? + @testset "2nd order" begin + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) + d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) - @testset "4th order" begin - stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) - d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) - - @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 - @test d_e*v ≈ v∂x[end,:] atol = 1e-13 - @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 - @test d_n*v ≈ v∂y[:,end] atol = 1e-13 + @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 + @test d_e*v ≈ v∂x[end,:] atol = 1e-13 + @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 + @test d_n*v ≈ v∂y[:,end] atol = 1e-13 + end + + @testset "4th order" begin + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) + + @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 + @test d_e*v ≈ v∂x[end,:] atol = 1e-13 + @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 + @test d_n*v ≈ v∂y[:,end] atol = 1e-13 + end end end end