changeset 1653:9e2228449a72 feature/sbp_operators/laplace_curvilinear

Restructure test sets for normal derivative
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 26 Jun 2024 13:42:19 +0200
parents 65b2d2c72fbc
children f4dc17cfafce
files test/SbpOperators/boundaryops/normal_derivative_test.jl
diffstat 1 files changed, 46 insertions(+), 44 deletions(-) [+]
line wrap: on
line diff
diff -r 65b2d2c72fbc -r 9e2228449a72 test/SbpOperators/boundaryops/normal_derivative_test.jl
--- a/test/SbpOperators/boundaryops/normal_derivative_test.jl	Wed Jun 26 12:54:29 2024 +0200
+++ b/test/SbpOperators/boundaryops/normal_derivative_test.jl	Wed Jun 26 13:42:19 2024 +0200
@@ -7,53 +7,55 @@
 import Sbplib.SbpOperators.BoundaryOperator
 
 @testset "normal_derivative" begin
-    g_1D = equidistant_grid(0.0, 1.0, 11)
-    g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12)
-    @testset "normal_derivative" begin
-    	stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-        @testset "1D" begin
-            d_l = normal_derivative(g_1D, stencil_set, Lower())
-            @test d_l == normal_derivative(g_1D, stencil_set, Lower())
-            @test d_l isa BoundaryOperator{T,Lower} where T
-            @test d_l isa LazyTensor{T,0,1} where T
-        end
-        @testset "2D" begin
-            d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}())
-            d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,Upper}())
-            Ix = IdentityTensor{Float64}((size(g_2D)[1],))
-            Iy = IdentityTensor{Float64}((size(g_2D)[2],))
-            d_l = normal_derivative(g_2D.grids[1], stencil_set, Lower())
-            d_r = normal_derivative(g_2D.grids[2], stencil_set, Upper())
-            @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}())
-            @test d_w ==  d_l⊗Iy
-            @test d_n ==  Ix⊗d_r
-            @test d_w isa LazyTensor{T,1,2} where T
-            @test d_n isa LazyTensor{T,1,2} where T
-        end
+	stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+
+    @testset "EquidistantGrid" begin
+        g_1D = equidistant_grid(0.0, 1.0, 11)
+
+        d_l = normal_derivative(g_1D, stencil_set, Lower())
+        @test d_l == normal_derivative(g_1D, stencil_set, Lower())
+        @test d_l isa BoundaryOperator{T,Lower} where T
+        @test d_l isa LazyTensor{T,0,1} where T
     end
-    @testset "Accuracy" begin
-        v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y)
-        v∂x = eval_on(g_2D, (x,y)-> 2*x + y)
-        v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x)
-        # TODO: Test for higher order polynomials?
-        @testset "2nd order" begin
-        	stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
-            d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D))
+
+    @testset "TensorGrid" begin
+        g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12)
+        d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}())
+        d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,Upper}())
+        Ix = IdentityTensor{Float64}((size(g_2D)[1],))
+        Iy = IdentityTensor{Float64}((size(g_2D)[2],))
+        d_l = normal_derivative(g_2D.grids[1], stencil_set, Lower())
+        d_r = normal_derivative(g_2D.grids[2], stencil_set, Upper())
+        @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}())
+        @test d_w ==  d_l⊗Iy
+        @test d_n ==  Ix⊗d_r
+        @test d_w isa LazyTensor{T,1,2} where T
+        @test d_n isa LazyTensor{T,1,2} where T
 
-            @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
-            @test d_e*v ≈ v∂x[end,:] atol = 1e-13
-            @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
-            @test d_n*v ≈ v∂y[:,end] atol = 1e-13
-        end
+        @testset "Accuracy" begin
+            v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y)
+            v∂x = eval_on(g_2D, (x,y)-> 2*x + y)
+            v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x)
+            # TODO: Test for higher order polynomials?
+            @testset "2nd order" begin
+            	stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
+                d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D))
 
-        @testset "4th order" begin
-            stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-            d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D))
-            
-            @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
-            @test d_e*v ≈ v∂x[end,:] atol = 1e-13
-            @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
-            @test d_n*v ≈ v∂y[:,end] atol = 1e-13
+                @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
+                @test d_e*v ≈ v∂x[end,:] atol = 1e-13
+                @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
+                @test d_n*v ≈ v∂y[:,end] atol = 1e-13
+            end
+
+            @testset "4th order" begin
+                stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+                d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D))
+
+                @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
+                @test d_e*v ≈ v∂x[end,:] atol = 1e-13
+                @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
+                @test d_n*v ≈ v∂y[:,end] atol = 1e-13
+            end
         end
     end
 end