Mercurial > repos > public > sbplib_julia
view test/SbpOperators/boundaryops/normal_derivative_test.jl @ 1653:9e2228449a72 feature/sbp_operators/laplace_curvilinear
Restructure test sets for normal derivative
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 26 Jun 2024 13:42:19 +0200 |
parents | 43aaf710463e |
children | f4dc17cfafce |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.LazyTensors using Sbplib.RegionIndices import Sbplib.SbpOperators.BoundaryOperator @testset "normal_derivative" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "EquidistantGrid" begin g_1D = equidistant_grid(0.0, 1.0, 11) d_l = normal_derivative(g_1D, stencil_set, Lower()) @test d_l == normal_derivative(g_1D, stencil_set, Lower()) @test d_l isa BoundaryOperator{T,Lower} where T @test d_l isa LazyTensor{T,0,1} where T end @testset "TensorGrid" begin g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12) d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,Upper}()) Ix = IdentityTensor{Float64}((size(g_2D)[1],)) Iy = IdentityTensor{Float64}((size(g_2D)[2],)) d_l = normal_derivative(g_2D.grids[1], stencil_set, Lower()) d_r = normal_derivative(g_2D.grids[2], stencil_set, Upper()) @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) @test d_w == d_l⊗Iy @test d_n == Ix⊗d_r @test d_w isa LazyTensor{T,1,2} where T @test d_n isa LazyTensor{T,1,2} where T @testset "Accuracy" begin v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) v∂x = eval_on(g_2D, (x,y)-> 2*x + y) v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x) # TODO: Test for higher order polynomials? @testset "2nd order" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 end @testset "4th order" begin stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 end end end end