comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 1653:9e2228449a72 feature/sbp_operators/laplace_curvilinear

Restructure test sets for normal derivative
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 26 Jun 2024 13:42:19 +0200
parents 43aaf710463e
children f4dc17cfafce
comparison
equal deleted inserted replaced
1652:65b2d2c72fbc 1653:9e2228449a72
5 using Sbplib.LazyTensors 5 using Sbplib.LazyTensors
6 using Sbplib.RegionIndices 6 using Sbplib.RegionIndices
7 import Sbplib.SbpOperators.BoundaryOperator 7 import Sbplib.SbpOperators.BoundaryOperator
8 8
9 @testset "normal_derivative" begin 9 @testset "normal_derivative" begin
10 g_1D = equidistant_grid(0.0, 1.0, 11) 10 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
11 g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12) 11
12 @testset "normal_derivative" begin 12 @testset "EquidistantGrid" begin
13 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) 13 g_1D = equidistant_grid(0.0, 1.0, 11)
14 @testset "1D" begin 14
15 d_l = normal_derivative(g_1D, stencil_set, Lower()) 15 d_l = normal_derivative(g_1D, stencil_set, Lower())
16 @test d_l == normal_derivative(g_1D, stencil_set, Lower()) 16 @test d_l == normal_derivative(g_1D, stencil_set, Lower())
17 @test d_l isa BoundaryOperator{T,Lower} where T 17 @test d_l isa BoundaryOperator{T,Lower} where T
18 @test d_l isa LazyTensor{T,0,1} where T 18 @test d_l isa LazyTensor{T,0,1} where T
19 end
20 @testset "2D" begin
21 d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}())
22 d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,Upper}())
23 Ix = IdentityTensor{Float64}((size(g_2D)[1],))
24 Iy = IdentityTensor{Float64}((size(g_2D)[2],))
25 d_l = normal_derivative(g_2D.grids[1], stencil_set, Lower())
26 d_r = normal_derivative(g_2D.grids[2], stencil_set, Upper())
27 @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}())
28 @test d_w == d_l⊗Iy
29 @test d_n == Ix⊗d_r
30 @test d_w isa LazyTensor{T,1,2} where T
31 @test d_n isa LazyTensor{T,1,2} where T
32 end
33 end 19 end
34 @testset "Accuracy" begin
35 v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y)
36 v∂x = eval_on(g_2D, (x,y)-> 2*x + y)
37 v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x)
38 # TODO: Test for higher order polynomials?
39 @testset "2nd order" begin
40 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
41 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D))
42 20
43 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 21 @testset "TensorGrid" begin
44 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 22 g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12)
45 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 23 d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}())
46 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 24 d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,Upper}())
47 end 25 Ix = IdentityTensor{Float64}((size(g_2D)[1],))
26 Iy = IdentityTensor{Float64}((size(g_2D)[2],))
27 d_l = normal_derivative(g_2D.grids[1], stencil_set, Lower())
28 d_r = normal_derivative(g_2D.grids[2], stencil_set, Upper())
29 @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}())
30 @test d_w == d_l⊗Iy
31 @test d_n == Ix⊗d_r
32 @test d_w isa LazyTensor{T,1,2} where T
33 @test d_n isa LazyTensor{T,1,2} where T
48 34
49 @testset "4th order" begin 35 @testset "Accuracy" begin
50 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) 36 v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y)
51 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) 37 v∂x = eval_on(g_2D, (x,y)-> 2*x + y)
52 38 v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x)
53 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 39 # TODO: Test for higher order polynomials?
54 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 40 @testset "2nd order" begin
55 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
56 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 42 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D))
43
44 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
45 @test d_e*v ≈ v∂x[end,:] atol = 1e-13
46 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
47 @test d_n*v ≈ v∂y[:,end] atol = 1e-13
48 end
49
50 @testset "4th order" begin
51 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
52 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D))
53
54 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
55 @test d_e*v ≈ v∂x[end,:] atol = 1e-13
56 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
57 @test d_n*v ≈ v∂y[:,end] atol = 1e-13
58 end
57 end 59 end
58 end 60 end
59 end 61 end