Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 1653:9e2228449a72 feature/sbp_operators/laplace_curvilinear
Restructure test sets for normal derivative
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 26 Jun 2024 13:42:19 +0200 |
parents | 43aaf710463e |
children | f4dc17cfafce |
comparison
equal
deleted
inserted
replaced
1652:65b2d2c72fbc | 1653:9e2228449a72 |
---|---|
5 using Sbplib.LazyTensors | 5 using Sbplib.LazyTensors |
6 using Sbplib.RegionIndices | 6 using Sbplib.RegionIndices |
7 import Sbplib.SbpOperators.BoundaryOperator | 7 import Sbplib.SbpOperators.BoundaryOperator |
8 | 8 |
9 @testset "normal_derivative" begin | 9 @testset "normal_derivative" begin |
10 g_1D = equidistant_grid(0.0, 1.0, 11) | 10 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
11 g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12) | 11 |
12 @testset "normal_derivative" begin | 12 @testset "EquidistantGrid" begin |
13 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 13 g_1D = equidistant_grid(0.0, 1.0, 11) |
14 @testset "1D" begin | 14 |
15 d_l = normal_derivative(g_1D, stencil_set, Lower()) | 15 d_l = normal_derivative(g_1D, stencil_set, Lower()) |
16 @test d_l == normal_derivative(g_1D, stencil_set, Lower()) | 16 @test d_l == normal_derivative(g_1D, stencil_set, Lower()) |
17 @test d_l isa BoundaryOperator{T,Lower} where T | 17 @test d_l isa BoundaryOperator{T,Lower} where T |
18 @test d_l isa LazyTensor{T,0,1} where T | 18 @test d_l isa LazyTensor{T,0,1} where T |
19 end | |
20 @testset "2D" begin | |
21 d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) | |
22 d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,Upper}()) | |
23 Ix = IdentityTensor{Float64}((size(g_2D)[1],)) | |
24 Iy = IdentityTensor{Float64}((size(g_2D)[2],)) | |
25 d_l = normal_derivative(g_2D.grids[1], stencil_set, Lower()) | |
26 d_r = normal_derivative(g_2D.grids[2], stencil_set, Upper()) | |
27 @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) | |
28 @test d_w == d_l⊗Iy | |
29 @test d_n == Ix⊗d_r | |
30 @test d_w isa LazyTensor{T,1,2} where T | |
31 @test d_n isa LazyTensor{T,1,2} where T | |
32 end | |
33 end | 19 end |
34 @testset "Accuracy" begin | |
35 v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) | |
36 v∂x = eval_on(g_2D, (x,y)-> 2*x + y) | |
37 v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x) | |
38 # TODO: Test for higher order polynomials? | |
39 @testset "2nd order" begin | |
40 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
41 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) | |
42 | 20 |
43 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 | 21 @testset "TensorGrid" begin |
44 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 | 22 g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12) |
45 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 | 23 d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) |
46 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 | 24 d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,Upper}()) |
47 end | 25 Ix = IdentityTensor{Float64}((size(g_2D)[1],)) |
26 Iy = IdentityTensor{Float64}((size(g_2D)[2],)) | |
27 d_l = normal_derivative(g_2D.grids[1], stencil_set, Lower()) | |
28 d_r = normal_derivative(g_2D.grids[2], stencil_set, Upper()) | |
29 @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) | |
30 @test d_w == d_l⊗Iy | |
31 @test d_n == Ix⊗d_r | |
32 @test d_w isa LazyTensor{T,1,2} where T | |
33 @test d_n isa LazyTensor{T,1,2} where T | |
48 | 34 |
49 @testset "4th order" begin | 35 @testset "Accuracy" begin |
50 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 36 v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) |
51 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) | 37 v∂x = eval_on(g_2D, (x,y)-> 2*x + y) |
52 | 38 v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x) |
53 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 | 39 # TODO: Test for higher order polynomials? |
54 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 | 40 @testset "2nd order" begin |
55 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 | 41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) |
56 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 | 42 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) |
43 | |
44 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 | |
45 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 | |
46 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 | |
47 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 | |
48 end | |
49 | |
50 @testset "4th order" begin | |
51 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
52 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) | |
53 | |
54 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 | |
55 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 | |
56 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 | |
57 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 | |
58 end | |
57 end | 59 end |
58 end | 60 end |
59 end | 61 end |