Mercurial > repos > public > sbplib_julia
view test/testSbpOperators.jl @ 642:f4a16b403487 feature/volume_and_boundary_operators
Implement the inverse quadrature operator as a volume operator and update tests.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 04 Jan 2021 17:17:40 +0100 |
parents | 5e50e9815732 |
children | 0928bbc3ee8b |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.RegionIndices using Sbplib.LazyTensors using LinearAlgebra using TOML import Sbplib.SbpOperators.Stencil import Sbplib.SbpOperators.VolumeOperator import Sbplib.SbpOperators.volume_operator import Sbplib.SbpOperators.BoundaryOperator import Sbplib.SbpOperators.boundary_operator import Sbplib.SbpOperators.Parity @testset "SbpOperators" begin @testset "Stencil" begin s = Stencil((-2,2), (1.,2.,2.,3.,4.)) @test s isa Stencil{Float64, 5} @test eltype(s) == Float64 @test SbpOperators.scale(s, 2) == Stencil((-2,2), (2.,4.,4.,6.,8.)) @test Stencil((1,2,3,4), center=1) == Stencil((0, 3),(1,2,3,4)) @test Stencil((1,2,3,4), center=2) == Stencil((-1, 2),(1,2,3,4)) @test Stencil((1,2,3,4), center=4) == Stencil((-3, 0),(1,2,3,4)) end @testset "parse_rational" begin @test SbpOperators.parse_rational("1") isa Rational @test SbpOperators.parse_rational("1") == 1//1 @test SbpOperators.parse_rational("1/2") isa Rational @test SbpOperators.parse_rational("1/2") == 1//2 @test SbpOperators.parse_rational("37/13") isa Rational @test SbpOperators.parse_rational("37/13") == 37//13 end @testset "readoperator" begin toml_str = """ [meta] type = "equidistant" [order2] H.inner = ["1"] D1.inner_stencil = ["-1/2", "0", "1/2"] D1.closure_stencils = [ ["-1", "1"], ] d1.closure = ["-3/2", "2", "-1/2"] [order4] H.closure = ["17/48", "59/48", "43/48", "49/48"] D2.inner_stencil = ["-1/12","4/3","-5/2","4/3","-1/12"] D2.closure_stencils = [ [ "2", "-5", "4", "-1", "0", "0"], [ "1", "-2", "1", "0", "0", "0"], [ "-4/43", "59/43", "-110/43", "59/43", "-4/43", "0"], [ "-1/49", "0", "59/49", "-118/49", "64/49", "-4/49"], ] """ parsed_toml = TOML.parse(toml_str) @testset "get_stencil" begin @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil") == Stencil((-1/2, 0., 1/2), center=2) @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil", center=1) == Stencil((-1/2, 0., 1/2); center=1) @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil", center=3) == Stencil((-1/2, 0., 1/2); center=3) @test get_stencil(parsed_toml, "order2", "H", "inner") == Stencil((1.,), center=1) @test_throws AssertionError get_stencil(parsed_toml, "meta", "type") @test_throws AssertionError get_stencil(parsed_toml, "order2", "D1", "closure_stencils") end @testset "get_stencils" begin @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=(1,)) == (Stencil((-1., 1.), center=1),) @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=(2,)) == (Stencil((-1., 1.), center=2),) @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=[2]) == (Stencil((-1., 1.), center=2),) @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=[1,1,1,1]) == ( Stencil(( 2., -5., 4., -1., 0., 0.), center=1), Stencil(( 1., -2., 1., 0., 0., 0.), center=1), Stencil(( -4/43, 59/43, -110/43, 59/43, -4/43, 0.), center=1), Stencil(( -1/49, 0., 59/49, -118/49, 64/49, -4/49), center=1), ) @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(4,2,3,1)) == ( Stencil(( 2., -5., 4., -1., 0., 0.), center=4), Stencil(( 1., -2., 1., 0., 0., 0.), center=2), Stencil(( -4/43, 59/43, -110/43, 59/43, -4/43, 0.), center=3), Stencil(( -1/49, 0., 59/49, -118/49, 64/49, -4/49), center=1), ) @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=1:4) == ( Stencil(( 2., -5., 4., -1., 0., 0.), center=1), Stencil(( 1., -2., 1., 0., 0., 0.), center=2), Stencil(( -4/43, 59/43, -110/43, 59/43, -4/43, 0.), center=3), Stencil(( -1/49, 0., 59/49, -118/49, 64/49, -4/49), center=4), ) @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(1,2,3)) @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(1,2,3,5,4)) @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "inner_stencil",centers=(1,2)) end @testset "get_tuple" begin @test get_tuple(parsed_toml, "order2", "d1", "closure") == (-3/2, 2, -1/2) @test_throws AssertionError get_tuple(parsed_toml, "meta", "type") end end # @testset "apply_quadrature" begin # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) # h = 0.5 # # @test apply_quadrature(op, h, 1.0, 10, 100) == h # # N = 10 # qc = op.quadratureClosure # q = h.*(qc..., ones(N-2*closuresize(op))..., reverse(qc)...) # @assert length(q) == N # # for i ∈ 1:N # @test apply_quadrature(op, h, 1.0, i, N) == q[i] # end # # v = [2.,3.,2.,4.,5.,4.,3.,4.,5.,4.5] # for i ∈ 1:N # @test apply_quadrature(op, h, v[i], i, N) == q[i]*v[i] # end # end @testset "VolumeOperator" begin inner_stencil = Stencil(1/4 .* (1.,2.,1.),center=2) closure_stencils = (Stencil(1/2 .* (1.,1.),center=1),Stencil((0.,1.),center=2)) g_1D = EquidistantGrid(11,0.,1.) g_2D = EquidistantGrid((11,12),(0.,0.),(1.,1.)) g_3D = EquidistantGrid((11,12,10),(0.,0.,0.),(1.,1.,1.)) @testset "Constructors" begin #TODO: How are even and odd in SbpOperators.Parity exposed? Currently constructing even as Parity(1) @testset "1D" begin op = VolumeOperator(inner_stencil,closure_stencils,(11,),Parity(1)) @test op == VolumeOperator(g_1D,inner_stencil,closure_stencils,Parity(1)) @test op == volume_operator(g_1D,inner_stencil,closure_stencils,Parity(1),1) @test op isa TensorMapping{T,1,1} where T end @testset "2D" begin op_x = volume_operator(g_2D,inner_stencil,closure_stencils,Parity(1),1) op_y = volume_operator(g_2D,inner_stencil,closure_stencils,Parity(1),2) Ix = IdentityMapping{Float64}((11,)) Iy = IdentityMapping{Float64}((12,)) @test op_x == VolumeOperator(inner_stencil,closure_stencils,(11,),Parity(1))⊗Iy @test op_y == Ix⊗VolumeOperator(inner_stencil,closure_stencils,(12,),Parity(1)) @test op_x isa TensorMapping{T,2,2} where T @test op_y isa TensorMapping{T,2,2} where T end @testset "3D" begin op_x = volume_operator(g_3D,inner_stencil,closure_stencils,Parity(1),1) op_y = volume_operator(g_3D,inner_stencil,closure_stencils,Parity(1),2) op_z = volume_operator(g_3D,inner_stencil,closure_stencils,Parity(1),3) Ix = IdentityMapping{Float64}((11,)) Iy = IdentityMapping{Float64}((12,)) Iz = IdentityMapping{Float64}((10,)) @test op_x == VolumeOperator(inner_stencil,closure_stencils,(11,),Parity(1))⊗Iy⊗Iz @test op_y == Ix⊗VolumeOperator(inner_stencil,closure_stencils,(12,),Parity(1))⊗Iz @test op_z == Ix⊗Iy⊗VolumeOperator(inner_stencil,closure_stencils,(10,),Parity(1)) @test op_x isa TensorMapping{T,3,3} where T @test op_y isa TensorMapping{T,3,3} where T @test op_z isa TensorMapping{T,3,3} where T end end @testset "Sizes" begin @testset "1D" begin op = volume_operator(g_1D,inner_stencil,closure_stencils,Parity(1),1) @test range_size(op) == domain_size(op) == size(g_1D) end @testset "2D" begin op_x = volume_operator(g_2D,inner_stencil,closure_stencils,Parity(1),1) op_y = volume_operator(g_2D,inner_stencil,closure_stencils,Parity(1),2) @test range_size(op_y) == domain_size(op_y) == range_size(op_x) == domain_size(op_x) == size(g_2D) end @testset "3D" begin op_x = volume_operator(g_3D,inner_stencil,closure_stencils,Parity(1),1) op_y = volume_operator(g_3D,inner_stencil,closure_stencils,Parity(1),2) op_z = volume_operator(g_3D,inner_stencil,closure_stencils,Parity(1),3) @test range_size(op_z) == domain_size(op_z) == range_size(op_y) == domain_size(op_y) == range_size(op_x) == domain_size(op_x) == size(g_3D) end end # TODO: Test for other dimensions? op_x = volume_operator(g_2D,inner_stencil,closure_stencils,Parity(1),1) op_y = volume_operator(g_2D,inner_stencil,closure_stencils,Parity(-1),2) v = zeros(size(g_2D)) Nx = size(g_2D)[1] Ny = size(g_2D)[2] for i = 1:Nx v[i,:] .= i end rx = copy(v) rx[1,:] .= 1.5 rx[Nx,:] .= (2*Nx-1)/2 ry = copy(v) ry[:,Ny-1:Ny] = -v[:,Ny-1:Ny] @testset "Application" begin @test op_x*v ≈ rx rtol = 1e-14 @test op_y*v ≈ ry rtol = 1e-14 end # TODO: Test for other dimensions? @testset "Regions" begin @test (op_x*v)[Index(1,Lower),Index(3,Interior)] ≈ rx[1,3] rtol = 1e-14 @test (op_x*v)[Index(2,Lower),Index(3,Interior)] ≈ rx[2,3] rtol = 1e-14 @test (op_x*v)[Index(6,Interior),Index(3,Interior)] ≈ rx[6,3] rtol = 1e-14 @test (op_x*v)[Index(10,Upper),Index(3,Interior)] ≈ rx[10,3] rtol = 1e-14 @test (op_x*v)[Index(11,Upper),Index(3,Interior)] ≈ rx[11,3] rtol = 1e-14 @test_throws BoundsError (op_x*v)[Index(3,Lower),Index(3,Interior)] @test_throws BoundsError (op_x*v)[Index(9,Upper),Index(3,Interior)] @test (op_y*v)[Index(3,Interior),Index(1,Lower)] ≈ ry[3,1] rtol = 1e-14 @test (op_y*v)[Index(3,Interior),Index(2,Lower)] ≈ ry[3,2] rtol = 1e-14 @test (op_y*v)[Index(3,Interior),Index(6,Interior)] ≈ ry[3,6] rtol = 1e-14 @test (op_y*v)[Index(3,Interior),Index(11,Upper)] ≈ ry[3,11] rtol = 1e-14 @test (op_y*v)[Index(3,Interior),Index(12,Upper)] ≈ ry[3,12] rtol = 1e-14 @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(10,Upper)] @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(3,Lower)] end # TODO: Test for other dimensions? @testset "Inferred" begin @inferred apply(op_x, v,1,1) @inferred apply(op_x, v, Index(1,Lower),Index(1,Lower)) @inferred apply(op_x, v, Index(6,Interior),Index(1,Lower)) @inferred apply(op_x, v, Index(11,Upper),Index(1,Lower)) @inferred apply(op_y, v,1,1) @inferred apply(op_y, v, Index(1,Lower),Index(1,Lower)) @inferred apply(op_y, v, Index(1,Lower),Index(6,Interior)) @inferred apply(op_y, v, Index(1,Lower),Index(11,Upper)) end end @testset "SecondDerivative" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Lx = 3.5 Ly = 3. g_1D = EquidistantGrid(121, 0.0, Lx) g_2D = EquidistantGrid((121,123), (0.0, 0.0), (Lx, Ly)) # TODO: These areant really constructors. Better name? @testset "Constructors" begin @testset "1D" begin Dₓₓ = SecondDerivative(g_1D,op.innerStencil,op.closureStencils) @test Dₓₓ == SecondDerivative(g_1D,op.innerStencil,op.closureStencils,1) @test Dₓₓ isa VolumeOperator end @testset "2D" begin Dₓₓ = SecondDerivative(g_2D,op.innerStencil,op.closureStencils,1) D2 = SecondDerivative(g_1D,op.innerStencil,op.closureStencils) I = IdentityMapping{Float64}(size(g_2D)[2]) @test Dₓₓ == D2⊗I @test Dₓₓ isa TensorMapping{T,2,2} where T end end @testset "Accuracy" begin @testset "1D" begin monomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x) = 1/factorial(i)*x^i monomials = (monomials...,evalOn(g_1D,f_i)) end l2(v) = sqrt(spacing(g_1D)[1]*sum(v.^2)); #TODO: Error when reading second order stencil! # @testset "2nd order" begin # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) # Dₓₓ = SecondDerivative(g_1D,op.innerStencil,op.closureStencils) # @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-13 # @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-13 # end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for monomials up to order 3. # Exact differentiation is measured point-wise. For other grid functions # the error is measured in the l2-norm. @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Dₓₓ = SecondDerivative(g_1D,op.innerStencil,op.closureStencils) # TODO: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 @test Dₓₓ*monomials[4] ≈ monomials[2] atol = 5e-10 @test Dₓₓ*evalOn(g_1D,x -> sin(x)) ≈ evalOn(g_1D,x -> -sin(x)) rtol = 5e-4 norm = l2 end end @testset "2D" begin binomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x,y) = 1/factorial(i)*y^i + x^i binomials = (binomials...,evalOn(g_2D,f_i)) end l2(v) = sqrt(prod(spacing(g_2D))*sum(v.^2)); #TODO: Error when reading second order stencil! # @testset "2nd order" begin # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) # Dyy = SecondDerivative(g_2D,op.innerStencil,op.closureStencils,2) # @test Dyy*binomials[1] ≈ evalOn(g_2D,(x,y)->0.) atol = 5e-12 # @test Dyy*binomials[2] ≈ evalOn(g_2D,(x,y)->0.) atol = 5e-12 # end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. # Exact differentiation is measured point-wise. For other grid functions # the error is measured in the l2-norm. @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Dyy = SecondDerivative(g_2D,op.innerStencil,op.closureStencils,2) # TODO: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 @test Dyy*binomials[4] ≈ evalOn(g_2D,(x,y)->y) atol = 5e-9 @test Dyy*evalOn(g_2D, (x,y) -> sin(x)+cos(y)) ≈ evalOn(g_2D,(x,y) -> -cos(y)) rtol = 5e-4 norm = l2 end end end end @testset "Laplace" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) g_1D = EquidistantGrid(101, 0.0, 1.) #TODO: It's nice to verify that 3D works somewhere at least, but perhaps should keep 3D tests to a minimum to avoid # long run time for test? g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) # TODO: These areant really constructors. Better name? @testset "Constructors" begin @testset "1D" begin L = Laplace(g_1D, op.innerStencil, op.closureStencils) @test L == SecondDerivative(g_1D, op.innerStencil, op.closureStencils) @test L isa TensorMapping{T,1,1} where T end @testset "3D" begin L = Laplace(g_3D, op.innerStencil, op.closureStencils) @test L isa TensorMapping{T,3,3} where T Dxx = SecondDerivative(g_3D, op.innerStencil, op.closureStencils,1) Dyy = SecondDerivative(g_3D, op.innerStencil, op.closureStencils,2) Dzz = SecondDerivative(g_3D, op.innerStencil, op.closureStencils,3) @test L == Dxx + Dyy + Dzz end end @testset "Accuracy" begin polynomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i) polynomials = (polynomials...,evalOn(g_3D,f_i)) end l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2)); #TODO: Error when reading second order stencil! # @testset "2nd order" begin # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) # Dyy = SecondDerivative(g_2D,op.innerStencil,op.closureStencils,2) # @test Dyy*binomials[1] ≈ evalOn(g_2D,(x,y)->0.) atol = 5e-12 # @test Dyy*binomials[2] ≈ evalOn(g_2D,(x,y)->0.) atol = 5e-12 # end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. # Exact differentiation is measured point-wise. For other grid functions # the error is measured in the l2-norm. @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) L = Laplace(g_3D,op.innerStencil,op.closureStencils) # TODO: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test L*polynomials[4] ≈ polynomials[2] atol = 5e-9 @test L*evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) ≈ evalOn(g_3D,(x,y,z) -> -sin(x)-cos(y) + exp(z)) rtol = 5e-4 norm = l2 end end end @testset "DiagonalQuadrature" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Lx = π/2. Ly = Float64(π) g_1D = EquidistantGrid(77, 0.0, Lx) g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) integral(H,v) = sum(H*v) @testset "Constructors" begin @testset "1D" begin H = DiagonalQuadrature(g_1D,op.quadratureClosure) inner_stencil = Stencil((1.,),center=1) @test H == Quadrature(g_1D,inner_stencil,op.quadratureClosure) @test H isa TensorMapping{T,1,1} where T end @testset "1D" begin H = DiagonalQuadrature(g_2D,op.quadratureClosure) H_x = DiagonalQuadrature(restrict(g_2D,1),op.quadratureClosure) H_y = DiagonalQuadrature(restrict(g_2D,2),op.quadratureClosure) @test H == H_x⊗H_y @test H isa TensorMapping{T,2,2} where T end end @testset "Sizes" begin @testset "1D" begin H = DiagonalQuadrature(g_1D,op.quadratureClosure) @test domain_size(H) == size(g_1D) @test range_size(H) == size(g_1D) end @testset "2D" begin H = DiagonalQuadrature(g_2D,op.quadratureClosure) @test domain_size(H) == size(g_2D) @test range_size(H) == size(g_2D) end end @testset "Accuracy" begin @testset "1D" begin v = () for i = 0:4 f_i(x) = 1/factorial(i)*x^i v = (v...,evalOn(g_1D,f_i)) end u = evalOn(g_1D,x->sin(x)) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) H = DiagonalQuadrature(g_1D,op.quadratureClosure) for i = 1:2 @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 end @test integral(H,u) ≈ 1. rtol = 1e-4 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) H = DiagonalQuadrature(g_1D,op.quadratureClosure) for i = 1:4 @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 end @test integral(H,u) ≈ 1. rtol = 1e-8 end end @testset "2D" begin b = 2.1 v = b*ones(Float64, size(g_2D)) u = evalOn(g_2D,(x,y)->sin(x)+cos(y)) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) H = DiagonalQuadrature(g_2D,op.quadratureClosure) @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13 @test integral(H,u) ≈ π rtol = 1e-4 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) H = DiagonalQuadrature(g_2D,op.quadratureClosure) @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13 @test integral(H,u) ≈ π rtol = 1e-8 end end end end @testset "InverseDiagonalQuadrature" begin Lx = π/2. Ly = Float64(π) g_1D = EquidistantGrid(77, 0.0, Lx) g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) @testset "Constructors" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin Hi = InverseDiagonalQuadrature(g_1D, op.quadratureClosure); inner_stencil = Stencil((1.,),center=1) closures = () for i = 1:length(op.quadratureClosure) closures = (closures...,Stencil(op.quadratureClosure[i].range,1.0./op.quadratureClosure[i].weights)) end @test Hi == InverseQuadrature(g_1D,inner_stencil,closures) @test Hi isa TensorMapping{T,1,1} where T end @testset "2D" begin Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) Hi_x = InverseDiagonalQuadrature(restrict(g_2D,1),op.quadratureClosure) Hi_y = InverseDiagonalQuadrature(restrict(g_2D,2),op.quadratureClosure) @test Hi == Hi_x⊗Hi_y @test Hi isa TensorMapping{T,2,2} where T end end @testset "Sizes" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) @test domain_size(Hi) == size(g_1D) @test range_size(Hi) == size(g_1D) end @testset "2D" begin Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) @test domain_size(Hi) == size(g_2D) @test range_size(Hi) == size(g_2D) end end @testset "Accuracy" begin @testset "1D" begin v = evalOn(g_1D,x->sin(x)) u = evalOn(g_1D,x->x^3-x^2+1) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) H = DiagonalQuadrature(g_1D,op.quadratureClosure) Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) H = DiagonalQuadrature(g_1D,op.quadratureClosure) Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end end @testset "2D" begin v = evalOn(g_2D,(x,y)->sin(x)+cos(y)) u = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) H = DiagonalQuadrature(g_2D,op.quadratureClosure) Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) H = DiagonalQuadrature(g_2D,op.quadratureClosure) Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end end end end @testset "BoundaryOperator" begin closure_stencil = Stencil((0,2), (2.,1.,3.)) g_1D = EquidistantGrid(11, 0.0, 1.0) g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) @testset "Constructors" begin @testset "1D" begin op_l = BoundaryOperator{Lower}(closure_stencil,size(g_1D)[1]) @test op_l == BoundaryOperator(g_1D,closure_stencil,Lower()) @test op_l == boundary_operator(g_1D,closure_stencil,CartesianBoundary{1,Lower}()) @test op_l isa TensorMapping{T,0,1} where T op_r = BoundaryOperator{Upper}(closure_stencil,size(g_1D)[1]) @test op_r == BoundaryRestriction(g_1D,closure_stencil,Upper()) @test op_r == boundary_operator(g_1D,closure_stencil,CartesianBoundary{1,Upper}()) @test op_r isa TensorMapping{T,0,1} where T end @testset "2D" begin e_w = boundary_operator(g_2D,closure_stencil,CartesianBoundary{1,Upper}()) @test e_w isa InflatedTensorMapping @test e_w isa TensorMapping{T,1,2} where T end end op_l = boundary_operator(g_1D, closure_stencil, CartesianBoundary{1,Lower}()) op_r = boundary_operator(g_1D, closure_stencil, CartesianBoundary{1,Upper}()) op_w = boundary_operator(g_2D, closure_stencil, CartesianBoundary{1,Lower}()) op_e = boundary_operator(g_2D, closure_stencil, CartesianBoundary{1,Upper}()) op_s = boundary_operator(g_2D, closure_stencil, CartesianBoundary{2,Lower}()) op_n = boundary_operator(g_2D, closure_stencil, CartesianBoundary{2,Upper}()) @testset "Sizes" begin @testset "1D" begin @test domain_size(op_l) == (11,) @test domain_size(op_r) == (11,) @test range_size(op_l) == () @test range_size(op_r) == () end @testset "2D" begin @test domain_size(op_w) == (11,15) @test domain_size(op_e) == (11,15) @test domain_size(op_s) == (11,15) @test domain_size(op_n) == (11,15) @test range_size(op_w) == (15,) @test range_size(op_e) == (15,) @test range_size(op_s) == (11,) @test range_size(op_n) == (11,) end end @testset "Application" begin @testset "1D" begin v = evalOn(g_1D,x->1+x^2) u = fill(3.124) @test (op_l*v)[] == 2*v[1] + v[2] + 3*v[3] @test (op_r*v)[] == 2*v[end] + v[end-1] + 3*v[end-2] @test (op_r*v)[1] == 2*v[end] + v[end-1] + 3*v[end-2] @test op_l'*u == [2*u[]; u[]; 3*u[]; zeros(8)] @test op_r'*u == [zeros(8); 3*u[]; u[]; 2*u[]] end @testset "2D" begin v = rand(size(g_2D)...) u = fill(3.124) @test op_w*v ≈ 2*v[1,:] + v[2,:] + 3*v[3,:] rtol = 1e-14 @test op_e*v ≈ 2*v[end,:] + v[end-1,:] + 3*v[end-2,:] rtol = 1e-14 @test op_s*v ≈ 2*v[:,1] + v[:,2] + 3*v[:,3] rtol = 1e-14 @test op_n*v ≈ 2*v[:,end] + v[:,end-1] + 3*v[:,end-2] rtol = 1e-14 g_x = rand(size(g_2D)[1]) g_y = rand(size(g_2D)[2]) G_w = zeros(Float64, size(g_2D)...) G_w[1,:] = 2*g_y G_w[2,:] = g_y G_w[3,:] = 3*g_y G_e = zeros(Float64, size(g_2D)...) G_e[end,:] = 2*g_y G_e[end-1,:] = g_y G_e[end-2,:] = 3*g_y G_s = zeros(Float64, size(g_2D)...) G_s[:,1] = 2*g_x G_s[:,2] = g_x G_s[:,3] = 3*g_x G_n = zeros(Float64, size(g_2D)...) G_n[:,end] = 2*g_x G_n[:,end-1] = g_x G_n[:,end-2] = 3*g_x @test op_w'*g_y == G_w @test op_e'*g_y == G_e @test op_s'*g_x == G_s @test op_n'*g_x == G_n end @testset "Regions" begin u = fill(3.124) @test (op_l'*u)[Index(1,Lower)] == 2*u[] @test (op_l'*u)[Index(2,Lower)] == u[] @test (op_l'*u)[Index(6,Interior)] == 0 @test (op_l'*u)[Index(10,Upper)] == 0 @test (op_l'*u)[Index(11,Upper)] == 0 @test (op_r'*u)[Index(1,Lower)] == 0 @test (op_r'*u)[Index(2,Lower)] == 0 @test (op_r'*u)[Index(6,Interior)] == 0 @test (op_r'*u)[Index(10,Upper)] == u[] @test (op_r'*u)[Index(11,Upper)] == 2*u[] end end @testset "Inferred" begin v = ones(Float64, 11) u = fill(1.) @inferred apply(op_l, v) @inferred apply(op_r, v) @inferred apply_transpose(op_l, u, 4) @inferred apply_transpose(op_l, u, Index(1,Lower)) @inferred apply_transpose(op_l, u, Index(2,Lower)) @inferred apply_transpose(op_l, u, Index(6,Interior)) @inferred apply_transpose(op_l, u, Index(10,Upper)) @inferred apply_transpose(op_l, u, Index(11,Upper)) @inferred apply_transpose(op_r, u, 4) @inferred apply_transpose(op_r, u, Index(1,Lower)) @inferred apply_transpose(op_r, u, Index(2,Lower)) @inferred apply_transpose(op_r, u, Index(6,Interior)) @inferred apply_transpose(op_r, u, Index(10,Upper)) @inferred apply_transpose(op_r, u, Index(11,Upper)) end end @testset "BoundaryRestriction" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) g_1D = EquidistantGrid(11, 0.0, 1.0) g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) # TODO: These areant really constructors. Better name? @testset "Constructors" begin @testset "1D" begin e_l = BoundaryRestriction(g_1D,op.eClosure,Lower()) @test e_l == BoundaryRestriction(g_1D,op.eClosure,CartesianBoundary{1,Lower}()) @test e_l == BoundaryOperator(g_1D,op.eClosure,Lower()) @test e_l isa BoundaryOperator{T,Lower} where T @test e_l isa TensorMapping{T,0,1} where T e_r = BoundaryRestriction(g_1D,op.eClosure,Upper()) @test e_r == BoundaryRestriction(g_1D,op.eClosure,CartesianBoundary{1,Upper}()) @test e_r == BoundaryOperator(g_1D,op.eClosure,Upper()) @test e_r isa BoundaryOperator{T,Upper} where T @test e_r isa TensorMapping{T,0,1} where T end @testset "2D" begin e_w = BoundaryRestriction(g_2D,op.eClosure,CartesianBoundary{1,Upper}()) @test e_w isa InflatedTensorMapping @test e_w isa TensorMapping{T,1,2} where T end end @testset "Application" begin @testset "1D" begin e_l = BoundaryRestriction(g_1D, op.eClosure, CartesianBoundary{1,Lower}()) e_r = BoundaryRestriction(g_1D, op.eClosure, CartesianBoundary{1,Upper}()) v = evalOn(g_1D,x->1+x^2) u = fill(3.124) @test (e_l*v)[] == v[1] @test (e_r*v)[] == v[end] @test (e_r*v)[1] == v[end] @test e_l'*u == [u[]; zeros(10)] @test e_r'*u == [zeros(10); u[]] end @testset "2D" begin e_w = BoundaryRestriction(g_2D, op.eClosure, CartesianBoundary{1,Lower}()) e_e = BoundaryRestriction(g_2D, op.eClosure, CartesianBoundary{1,Upper}()) e_s = BoundaryRestriction(g_2D, op.eClosure, CartesianBoundary{2,Lower}()) e_n = BoundaryRestriction(g_2D, op.eClosure, CartesianBoundary{2,Upper}()) v = rand(11, 15) u = fill(3.124) @test e_w*v == v[1,:] @test e_e*v == v[end,:] @test e_s*v == v[:,1] @test e_n*v == v[:,end] g_x = rand(11) g_y = rand(15) G_w = zeros(Float64, (11,15)) G_w[1,:] = g_y G_e = zeros(Float64, (11,15)) G_e[end,:] = g_y G_s = zeros(Float64, (11,15)) G_s[:,1] = g_x G_n = zeros(Float64, (11,15)) G_n[:,end] = g_x @test e_w'*g_y == G_w @test e_e'*g_y == G_e @test e_s'*g_x == G_s @test e_n'*g_x == G_n end end end @testset "NormalDerivative" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) d_w = NormalDerivative(g, op.dClosure, CartesianBoundary{1,Lower}()) d_e = NormalDerivative(g, op.dClosure, CartesianBoundary{1,Upper}()) d_s = NormalDerivative(g, op.dClosure, CartesianBoundary{2,Lower}()) d_n = NormalDerivative(g, op.dClosure, CartesianBoundary{2,Upper}()) v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) v∂x = evalOn(g, (x,y)-> 2*x + y) v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) @test d_w isa TensorMapping{T,1,2} where T @test d_w*v ≈ v∂x[1,:] @test d_e*v ≈ -v∂x[end,:] @test d_s*v ≈ v∂y[:,1] @test d_n*v ≈ -v∂y[:,end] d_x_l = zeros(Float64, size(g)[1]) d_x_u = zeros(Float64, size(g)[1]) for i ∈ eachindex(d_x_l) d_x_l[i] = op.dClosure[i-1] d_x_u[i] = op.dClosure[length(d_x_u)-i] end d_y_l = zeros(Float64, size(g)[2]) d_y_u = zeros(Float64, size(g)[2]) for i ∈ eachindex(d_y_l) d_y_l[i] = op.dClosure[i-1] d_y_u[i] = op.dClosure[length(d_y_u)-i] end function prod_matrix(x,y) G = zeros(Float64, length(x), length(y)) for I ∈ CartesianIndices(G) G[I] = x[I[1]]*y[I[2]] end return G end g_x = [1,2,3,4.0,5] g_y = [5,4,3,2,1.0,11] G_w = prod_matrix(d_x_l, g_y) G_e = prod_matrix(d_x_u, g_y) G_s = prod_matrix(g_x, d_y_l) G_n = prod_matrix(g_x, d_y_u) @test d_w'*g_y ≈ G_w @test_broken d_e'*g_y ≈ G_e @test d_s'*g_x ≈ G_s @test_broken d_n'*g_x ≈ G_n end # # @testset "BoundaryQuadrature" begin # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) # # H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) # H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) # H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) # H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) # # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) # # function get_quadrature(N) # qc = op.quadratureClosure # q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) # @assert length(q) == N # return q # end # # v_w = v[1,:] # v_e = v[10,:] # v_s = v[:,1] # v_n = v[:,11] # # q_x = spacing(g)[1].*get_quadrature(10) # q_y = spacing(g)[2].*get_quadrature(11) # # @test H_w isa TensorOperator{T,1} where T # # @test domain_size(H_w, (3,)) == (3,) # @test domain_size(H_n, (3,)) == (3,) # # @test range_size(H_w, (3,)) == (3,) # @test range_size(H_n, (3,)) == (3,) # # @test size(H_w*v_w) == (11,) # @test size(H_e*v_e) == (11,) # @test size(H_s*v_s) == (10,) # @test size(H_n*v_n) == (10,) # # @test H_w*v_w .≈ q_y.*v_w # @test H_e*v_e .≈ q_y.*v_e # @test H_s*v_s .≈ q_x.*v_s # @test H_n*v_n .≈ q_x.*v_n # # @test H_w'*v_w == H_w'*v_w # @test H_e'*v_e == H_e'*v_e # @test H_s'*v_s == H_s'*v_s # @test H_n'*v_n == H_n'*v_n # end end