Mercurial > repos > public > sbplib_julia
comparison test/testSbpOperators.jl @ 642:f4a16b403487 feature/volume_and_boundary_operators
Implement the inverse quadrature operator as a volume operator and update tests.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 04 Jan 2021 17:17:40 +0100 |
parents | 5e50e9815732 |
children | 0928bbc3ee8b |
comparison
equal
deleted
inserted
replaced
641:5e50e9815732 | 642:f4a16b403487 |
---|---|
487 end | 487 end |
488 end | 488 end |
489 end | 489 end |
490 end | 490 end |
491 | 491 |
492 # @testset "InverseDiagonalQuadrature" begin | 492 @testset "InverseDiagonalQuadrature" begin |
493 # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 493 Lx = π/2. |
494 # Lx = π/2. | 494 Ly = Float64(π) |
495 # Ly = Float64(π) | 495 g_1D = EquidistantGrid(77, 0.0, Lx) |
496 # g_1D = EquidistantGrid(77, 0.0, Lx) | 496 g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) |
497 # g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | 497 @testset "Constructors" begin |
498 # @testset "Constructors" begin | 498 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
499 # # 1D | 499 @testset "1D" begin |
500 # Hi_x = InverseDiagonalQuadrature(inverse_spacing(g_1D)[1], 1. ./ op.quadratureClosure, size(g_1D)); | 500 Hi = InverseDiagonalQuadrature(g_1D, op.quadratureClosure); |
501 # @test Hi_x == InverseDiagonalQuadrature(g_1D,op.quadratureClosure) | 501 inner_stencil = Stencil((1.,),center=1) |
502 # @test Hi_x == inverse_diagonal_quadrature(g_1D,op.quadratureClosure) | 502 closures = () |
503 # @test Hi_x isa TensorMapping{T,1,1} where T | 503 for i = 1:length(op.quadratureClosure) |
504 # @test Hi_x' isa TensorMapping{T,1,1} where T | 504 closures = (closures...,Stencil(op.quadratureClosure[i].range,1.0./op.quadratureClosure[i].weights)) |
505 # | 505 end |
506 # # 2D | 506 @test Hi == InverseQuadrature(g_1D,inner_stencil,closures) |
507 # Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) | 507 @test Hi isa TensorMapping{T,1,1} where T |
508 # @test Hi_xy isa TensorMappingComposition | 508 end |
509 # @test Hi_xy isa TensorMapping{T,2,2} where T | 509 @testset "2D" begin |
510 # @test Hi_xy' isa TensorMapping{T,2,2} where T | 510 Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) |
511 # end | 511 Hi_x = InverseDiagonalQuadrature(restrict(g_2D,1),op.quadratureClosure) |
512 # | 512 Hi_y = InverseDiagonalQuadrature(restrict(g_2D,2),op.quadratureClosure) |
513 # @testset "Sizes" begin | 513 @test Hi == Hi_x⊗Hi_y |
514 # # 1D | 514 @test Hi isa TensorMapping{T,2,2} where T |
515 # Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) | 515 end |
516 # @test domain_size(Hi_x) == size(g_1D) | 516 end |
517 # @test range_size(Hi_x) == size(g_1D) | 517 |
518 # # 2D | 518 @testset "Sizes" begin |
519 # Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) | 519 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
520 # @test domain_size(Hi_xy) == size(g_2D) | 520 @testset "1D" begin |
521 # @test range_size(Hi_xy) == size(g_2D) | 521 Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) |
522 # end | 522 @test domain_size(Hi) == size(g_1D) |
523 # | 523 @test range_size(Hi) == size(g_1D) |
524 # @testset "Application" begin | 524 end |
525 # # 1D | 525 @testset "2D" begin |
526 # H_x = diagonal_quadrature(g_1D,op.quadratureClosure) | 526 Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) |
527 # Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) | 527 @test domain_size(Hi) == size(g_2D) |
528 # v_1D = evalOn(g_1D,x->sin(x)) | 528 @test range_size(Hi) == size(g_2D) |
529 # u_1D = evalOn(g_1D,x->x^3-x^2+1) | 529 end |
530 # @test Hi_x*H_x*v_1D ≈ v_1D rtol = 1e-15 | 530 end |
531 # @test Hi_x*H_x*u_1D ≈ u_1D rtol = 1e-15 | 531 |
532 # @test Hi_x*v_1D == Hi_x'*v_1D | 532 @testset "Accuracy" begin |
533 # # 2D | 533 @testset "1D" begin |
534 # H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) | 534 v = evalOn(g_1D,x->sin(x)) |
535 # Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) | 535 u = evalOn(g_1D,x->x^3-x^2+1) |
536 # v_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y)) | 536 @testset "2nd order" begin |
537 # u_2D = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) | 537 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) |
538 # @test Hi_xy*H_xy*v_2D ≈ v_2D rtol = 1e-15 | 538 H = DiagonalQuadrature(g_1D,op.quadratureClosure) |
539 # @test Hi_xy*H_xy*u_2D ≈ u_2D rtol = 1e-15 | 539 Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) |
540 # @test Hi_xy*v_2D ≈ Hi_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason? | 540 @test Hi*H*v ≈ v rtol = 1e-15 |
541 # end | 541 @test Hi*H*u ≈ u rtol = 1e-15 |
542 # | 542 end |
543 # @testset "Inferred" begin | 543 @testset "4th order" begin |
544 # Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) | 544 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
545 # Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) | 545 H = DiagonalQuadrature(g_1D,op.quadratureClosure) |
546 # v_1D = ones(Float64, size(g_1D)) | 546 Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) |
547 # v_2D = ones(Float64, size(g_2D)) | 547 @test Hi*H*v ≈ v rtol = 1e-15 |
548 # @inferred Hi_x*v_1D | 548 @test Hi*H*u ≈ u rtol = 1e-15 |
549 # @inferred Hi_x'*v_1D | 549 end |
550 # @inferred Hi_xy*v_2D | 550 end |
551 # @inferred Hi_xy'*v_2D | 551 @testset "2D" begin |
552 # end | 552 v = evalOn(g_2D,(x,y)->sin(x)+cos(y)) |
553 # end | 553 u = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) |
554 @testset "2nd order" begin | |
555 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
556 H = DiagonalQuadrature(g_2D,op.quadratureClosure) | |
557 Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) | |
558 @test Hi*H*v ≈ v rtol = 1e-15 | |
559 @test Hi*H*u ≈ u rtol = 1e-15 | |
560 end | |
561 @testset "4th order" begin | |
562 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
563 H = DiagonalQuadrature(g_2D,op.quadratureClosure) | |
564 Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) | |
565 @test Hi*H*v ≈ v rtol = 1e-15 | |
566 @test Hi*H*u ≈ u rtol = 1e-15 | |
567 end | |
568 end | |
569 end | |
570 end | |
554 | 571 |
555 @testset "BoundaryOperator" begin | 572 @testset "BoundaryOperator" begin |
556 closure_stencil = Stencil((0,2), (2.,1.,3.)) | 573 closure_stencil = Stencil((0,2), (2.,1.,3.)) |
557 g_1D = EquidistantGrid(11, 0.0, 1.0) | 574 g_1D = EquidistantGrid(11, 0.0, 1.0) |
558 g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) | 575 g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) |