Mercurial > repos > public > sbplib_julia
diff test/testSbpOperators.jl @ 642:f4a16b403487 feature/volume_and_boundary_operators
Implement the inverse quadrature operator as a volume operator and update tests.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 04 Jan 2021 17:17:40 +0100 |
parents | 5e50e9815732 |
children | 0928bbc3ee8b |
line wrap: on
line diff
--- a/test/testSbpOperators.jl Mon Jan 04 17:16:04 2021 +0100 +++ b/test/testSbpOperators.jl Mon Jan 04 17:17:40 2021 +0100 @@ -489,68 +489,85 @@ end end -# @testset "InverseDiagonalQuadrature" begin -# op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) -# Lx = π/2. -# Ly = Float64(π) -# g_1D = EquidistantGrid(77, 0.0, Lx) -# g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) -# @testset "Constructors" begin -# # 1D -# Hi_x = InverseDiagonalQuadrature(inverse_spacing(g_1D)[1], 1. ./ op.quadratureClosure, size(g_1D)); -# @test Hi_x == InverseDiagonalQuadrature(g_1D,op.quadratureClosure) -# @test Hi_x == inverse_diagonal_quadrature(g_1D,op.quadratureClosure) -# @test Hi_x isa TensorMapping{T,1,1} where T -# @test Hi_x' isa TensorMapping{T,1,1} where T -# -# # 2D -# Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) -# @test Hi_xy isa TensorMappingComposition -# @test Hi_xy isa TensorMapping{T,2,2} where T -# @test Hi_xy' isa TensorMapping{T,2,2} where T -# end -# -# @testset "Sizes" begin -# # 1D -# Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) -# @test domain_size(Hi_x) == size(g_1D) -# @test range_size(Hi_x) == size(g_1D) -# # 2D -# Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) -# @test domain_size(Hi_xy) == size(g_2D) -# @test range_size(Hi_xy) == size(g_2D) -# end -# -# @testset "Application" begin -# # 1D -# H_x = diagonal_quadrature(g_1D,op.quadratureClosure) -# Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) -# v_1D = evalOn(g_1D,x->sin(x)) -# u_1D = evalOn(g_1D,x->x^3-x^2+1) -# @test Hi_x*H_x*v_1D ≈ v_1D rtol = 1e-15 -# @test Hi_x*H_x*u_1D ≈ u_1D rtol = 1e-15 -# @test Hi_x*v_1D == Hi_x'*v_1D -# # 2D -# H_xy = diagonal_quadrature(g_2D,op.quadratureClosure) -# Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) -# v_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y)) -# u_2D = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) -# @test Hi_xy*H_xy*v_2D ≈ v_2D rtol = 1e-15 -# @test Hi_xy*H_xy*u_2D ≈ u_2D rtol = 1e-15 -# @test Hi_xy*v_2D ≈ Hi_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason? -# end -# -# @testset "Inferred" begin -# Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure) -# Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure) -# v_1D = ones(Float64, size(g_1D)) -# v_2D = ones(Float64, size(g_2D)) -# @inferred Hi_x*v_1D -# @inferred Hi_x'*v_1D -# @inferred Hi_xy*v_2D -# @inferred Hi_xy'*v_2D -# end -# end +@testset "InverseDiagonalQuadrature" begin + Lx = π/2. + Ly = Float64(π) + g_1D = EquidistantGrid(77, 0.0, Lx) + g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) + @testset "Constructors" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + @testset "1D" begin + Hi = InverseDiagonalQuadrature(g_1D, op.quadratureClosure); + inner_stencil = Stencil((1.,),center=1) + closures = () + for i = 1:length(op.quadratureClosure) + closures = (closures...,Stencil(op.quadratureClosure[i].range,1.0./op.quadratureClosure[i].weights)) + end + @test Hi == InverseQuadrature(g_1D,inner_stencil,closures) + @test Hi isa TensorMapping{T,1,1} where T + end + @testset "2D" begin + Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) + Hi_x = InverseDiagonalQuadrature(restrict(g_2D,1),op.quadratureClosure) + Hi_y = InverseDiagonalQuadrature(restrict(g_2D,2),op.quadratureClosure) + @test Hi == Hi_x⊗Hi_y + @test Hi isa TensorMapping{T,2,2} where T + end + end + + @testset "Sizes" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + @testset "1D" begin + Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) + @test domain_size(Hi) == size(g_1D) + @test range_size(Hi) == size(g_1D) + end + @testset "2D" begin + Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) + @test domain_size(Hi) == size(g_2D) + @test range_size(Hi) == size(g_2D) + end + end + + @testset "Accuracy" begin + @testset "1D" begin + v = evalOn(g_1D,x->sin(x)) + u = evalOn(g_1D,x->x^3-x^2+1) + @testset "2nd order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) + H = DiagonalQuadrature(g_1D,op.quadratureClosure) + Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) + @test Hi*H*v ≈ v rtol = 1e-15 + @test Hi*H*u ≈ u rtol = 1e-15 + end + @testset "4th order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + H = DiagonalQuadrature(g_1D,op.quadratureClosure) + Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) + @test Hi*H*v ≈ v rtol = 1e-15 + @test Hi*H*u ≈ u rtol = 1e-15 + end + end + @testset "2D" begin + v = evalOn(g_2D,(x,y)->sin(x)+cos(y)) + u = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) + @testset "2nd order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) + H = DiagonalQuadrature(g_2D,op.quadratureClosure) + Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) + @test Hi*H*v ≈ v rtol = 1e-15 + @test Hi*H*u ≈ u rtol = 1e-15 + end + @testset "4th order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + H = DiagonalQuadrature(g_2D,op.quadratureClosure) + Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) + @test Hi*H*v ≈ v rtol = 1e-15 + @test Hi*H*u ≈ u rtol = 1e-15 + end + end + end +end @testset "BoundaryOperator" begin closure_stencil = Stencil((0,2), (2.,1.,3.))